Comprehensive Subfamilies of Bi-Univalent Functions Defined by Error Function Subordinate to Gegenbauer Polynomials

Authors

DOI:

https://doi.org/10.62298/advmath.42

Keywords:

Analytic, Univalent, Bi-univalent, Symmetric domain, Error function, Gegenbauer polynomials, Fekete-Szegö

Abstract

This work explores coefficient estimates for analytic functions in a symmetric domain. Building on recent studies that use polynomials such as Lucas and Legendre polynomials to bound the Maclaurin coefficients |a2| and |a3|, we turn to Gegenbauer polynomials. By applying the imaginary error function and subordination techniques, we derive sharp bounds for |a2| and |a3| and the Fekete-Szegö functional for two extensive new subclasses. Our general theorems also yield several novel special cases, demonstrating the breadth of our results.

References

[1] H. Alzer, Error function inequalities, Adv. Comput. Math., 33(3) (2010), 349–379. [CrossRef] [Scopus] [Web of Science]

[2] D. Coman, The radius of starlikeness for the error function, Stud. Univ. Babeş-Bolyai Math., 36 (1991), 13–16. [Web]

[3] A. Elbert and A. Laforgia, The zeros of the complementary error function, Numer. Algorithms, 49(1-4) (2008), 153–157. [CrossRef] [Scopus] [Web of Science]

[4] D.A. Brannan and T.S. Taha, On some classes of bi-univalent functions, Stud. Univ. Babeş-Bolyai Math., 31 (1986), 70–77. [Web]

[5] A. Legendre, Recherches sur l’attraction des sphéroides homogénes, Mém. Prés. Acad. Sci. Inst. France, 10 (1785), 411–434.

[6] M. Abramowitz and I.A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs and Mathematical Tables, Dover Publ., New York, (1965). [CrossRef] [Scopus]

[7] C. Ramachandran, L. Vanitha and S. Kanas, Certain results on q-starlike and q-convex error functions, Math. Slovaca, 68(2) (2018), 361–368. [CrossRef] [Scopus] [Web of Science]

[8] N.H. Mohammed, N.E. Cho, E.A. Adegani and T. Bulboaca, Geometric properties of normalized imaginary error function, Stud. Univ. Babes Bolyai Math., 67 (2022), 455–462. [Web]

[9] H.M. Srivastava, A.K. Mishra and P. Gochhayat, Certain subclasses of analytic and bi-univalent functions, Appl. Math. Lett., 23(10) (2010), 1188–1192. [CrossRef] [Scopus] [Web of Science]

[10] H. Bateman, Higher Transcendental Functions, McGraw–Hill, New York, (1953). [Web]

[11] B. Doman, The Classical Orthogonal Polynomials, World Scientific, Singapore, (2015). [Web]

[12] A. Amourah, B.A. Frasin and T. Abdeljawad, Fekete-Szegö inequality for analytic and bi-univalent functions subordinate to Gegenbauer polynomials, J. Funct. Spaces, (2021), Article ID 5574673. [CrossRef] [Scopus] [Web of Science]

[13] C. Carathéodory, Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen, Math. Ann., 64 (1907), 95–115. [CrossRef]

Downloads

Published

31.12.2025

How to Cite

Jan, A., Khan, M., Shah, M., & Ahmad, K. (2025). Comprehensive Subfamilies of Bi-Univalent Functions Defined by Error Function Subordinate to Gegenbauer Polynomials. Advances in Analysis and Applied Mathematics, 2(2), 107–118. https://doi.org/10.62298/advmath.42