A Subclass of Analytic Functions Involving Certain Mathieu-Type Series

Authors

DOI:

https://doi.org/10.62298/advmath.29

Keywords:

Analytic functions, Starlike function, Pascu-type analytic functions, Janowski function, Mathieu-type series

Abstract

In our present work, we first study certain Mathieu-type series and then define a new subclass of Pascu-type analytic functions. Also some inheriting results like the Fekete-Szegö functional, radius problems, a number of sufficient conditions and results related to partial sums are derived. Some new and known consequences of our main results are also given.

References

[1] N.E. Cho, V. Kumar, S.S. Kumar, V. Ravichandran, Radius problems for starlike functions associated with the sine function, Bull. Iranian Math. Soc., 45(1), (2019), 213-232. [CrossRef] [Scopus] [Web of Science]

[2] L.A. Wani, A. Swaminathan, Starlike and convex functions associated with a Nephroid domain, Bull. Malaysian Math. Sci. Soc., 44(1), (2021), 79-104. [CrossRef] [Scopus] [Web of Science]

[3] R. Mendiratta, S. Nagpal, V. Ravichandran, On a subclass of strongly starlike functions associated with exponential function, Bull. Malaysian Math. Sci. Soc., 38(1), (2015), 365-386. [CrossRef] [Scopus] [Web of Science]

[4] R.K. Raina, J. Sokółyz, On coefficient estimates for a certain class of starlike functions, Hacettepe J. Math. Stat., 44(6), (2015), 1427-1433. [CrossRef] [Scopus] [Web of Science]

[5] S. Kanas, D. Răducanu, Some class of analytic functions related to conic domains, Mathematica Slovaca, 64(5), (2014), 1183-1196. [CrossRef] [Scopus] [Web of Science]

[6] J. Dziok, R.K. Raina, J. Sokół, On a class of starlike functions related to a shell-like curve connected with Fibonacci numbers, Math. Comput. Modelling, 57(5-6), (2013), 1203-1211. [CrossRef] [Scopus] [Web of Science]

[7] N.E. Cho, S. Kumar, V. Kumar, V. Ravichandran, H.M. Srivastava, Starlike functions related to the Bell numbers, Symmetry, 11(2), (2019), 219. [CrossRef] [Scopus] [Web of Science]

[8] W. Janowski, Some extremal problem for certain families of analytic functions I, Ann. Polon. Math., 28, (1973), 298-326. [Web]

[9] E.L. Mathieu, Traité de Physique Mathématique. VI-VII: Théorie de l’Élasticité des Corps Solides (Part 2), Gauthier-Villars, Paris, (1890). [Web]

[10] O. Emersleben, Über die reihe $sum_{n=1}^{infty } n (n^{2}+c^{2})^{-2}$, Math. Ann., 125, (1952), 165-171. [CrossRef]

[11] Ž. Tomovski, New integral and series representations of the generalized Mathieu series, Appl. Anal. Discrete Math., 2(2), (2008), 205-212.[CrossRef] [Scopus] [Web of Science]

[12] D. Bansal, J. Sokół, Geometric properties of Mathieu-type power series inside unit disk, J. Math. Inequal., 13(4), (2019), 911-918. [CrossRef] [Scopus] [Web of Science]

[13] D. Bansal, J. Sokół, Univalency and starlikeness of the Hurwitz-Lerch zeta function inside unit disk, J. Math. Inequal., 11(3), (2017), 863-871. [CrossRef] [Scopus] [Web of Science]

[14] M. Nunokawa, J. Sokół, On an extension of Sakaguchi’s Result, J. Math. Inequal., 9(3), (2015), 683-697. [CrossRef] [Scopus] [Web of Science]

[15] J. Sokół, P. Witowicz, On an application of Vietoris’s inequality, J. Math. Inequal., 10(3), (2016), 829-836. [CrossRef] [Scopus] [Web of Science]

[16] B. Khan, Z.-G. Liu, T.G. Shaba, N. Khan, M.G. Khan, Applications of q-derivative operator to the subclass of bi-univalent functions involving q-Chebyshev polynomials, J. Math., 2022, (2022), 8162182. [CrossRef] [Scopus] [Web of Science]

[17] W.K. Mashwan, B. Ahmad, M.G. Khan, S. Arjika, B. Khan, Pascu-type analytic functions by using Mittag-Leffler functions in Janowski domain, Math. Probl. Eng., 2021, (2021), 1209871. [CrossRef] [Scopus] [Web of Science]

[18] D. Liu, S. Araci, B. Khan, A subclass of Janowski starlike functions involving Mathieu-type series, Symmetry, 14(1), (2022), 2. [CrossRef] [Scopus] [Web of Science]

[19] L. Shi, M.G. Khan, B. Ahmad, P. Agarwal, S. Momani, Certain coefficient estimate problems for three-leaf-type starlike functions, Fractal Fract., 5(4), (2021), 137. [CrossRef] [Scopus] [Web of Science]

[20] F.R. Keogh, E.P. Merkes, A coefficient inequality for certain classes of analytic functions, Proc. Amer. Math. Soc., 20, (1969), 8-12. [Web]

[21] W. Ma, D. Minda, A unified treatment of some special classes of univalent functions, in: Proceedings of the Conference on Complex Analysis (Tianjin, Peoples Republic of China; June 19-23, 1992), Z. Li, F. Ren, L. Yang, S. Zhang (eds.), (1994), 157-169, International Press, Cambridge, MA. [Web of Science]

[22] B. Khan, J. Gong, M.G. Khan, F. Tchier, Sharp coefficient Bounds for a class of symmetric starlike functions involving the balloon shape domain, Heliyon, 10(19), (2024), e38838. [CrossRef] [Scopus]

[23] Q. Hu, H.M. Srivastava, B. Ahmad, W.K. Mashwani, B. Khan, A subclass of multivalent Janowski type q-starlike functions and its consequences, Symmetry, 13(7), (2021), 1275. [CrossRef] [Scopus] [Web of Science]

[24] B. Ahmad, W.K. Mashwani, S. Araci, M.G. Khan, B. Khan, A subclass of Meromorphic Janowski-type multivalent q-starlike functions involving a q-differential operator, Adv. Contin. Discrete Models, 2022(1), (2022), 5. [CrossRef] [Scopus] [Web of Science]

[25] Q. Hu, T.G. Shaba, J. Younis, W.K. Mashwani, M. Çağlar, Applications of q-derivative operator to subclasses of bi-univalent functions involving Gegenbauer polynomials, Appl. Math. Sci. Eng., 30(1), (2022), 501-520. [CrossRef] [Scopus] [Web of Science]

[26] M.F. Yassen, A.A. Attiya, P. Agarwal, Subordination and superordination properties for certain family of analytic functions associated with Mittag–Leffler function, Symmetry, 12(10), (2020), 1724, 1-20. [CrossRef] [Scopus] [Web of Science]

[27] S. Çakmak, Properties of a subclass of harmonic univalent functions using the Al-Oboudi q-differential operator, Fund. J. Math. Appl., 8(2), (2025), 104-114. [CrossRef]

[28] Q. Bao, D. Yang, Notes on q-partial differential equations for q-Laguerre polynomials and little q-Jacobi polynomials, Fund. J. Math. Appl., 7(2), (2024), 59-76. [CrossRef]

Downloads

Published

31.12.2025

How to Cite

Khan, B., Murugusundaramoorthy, G., & Asif, S. (2025). A Subclass of Analytic Functions Involving Certain Mathieu-Type Series. Advances in Analysis and Applied Mathematics, 2(2), 73–88. https://doi.org/10.62298/advmath.29