High-Accuracy Finite Element Modeling of the Rosenau–Hyman Equation
DOI:
https://doi.org/10.62298/advmath.36Keywords:
Rosenau--Hymann equation, Collocation, Septic B-spline, Finite element methodAbstract
The present study focuses on the numerical solution of the Rosenau–Hyman (R–H) equation, also known as the generalized Korteweg–de Vries equation, which describes the dynamics of shallow water waves and pattern formation in liquid drops. To this end, a collocation finite element method based on septic B-spline approximation is proposed and applied to the R–H equation for different parameter values of the test problem. In addition, a von Neumann stability analysis is performed, demonstrating that the proposed scheme is unconditionally stable. The efficiency and reliability of the method are illustrated by solving a test problem and computing the L2 and L∞ error norms. The numerical results are found to be in very good agreement with the corresponding analytical solutions, indicating that the proposed B-spline collocation algorithm is both accurate and robust. To further demonstrate the effectiveness of the method in solving nonlinear equations, the results are presented graphically as well as in tabular form. The close consistency between analytical and numerical results suggests that the proposed approach is a powerful and attractive tool for investigating characteristic features of nonlinear phenomena in various fields of science.
References
[1] J.V. Boussinesq, Essai sur la theorie des eaux courantes (Essay on the theory of water flow), in: Memoires Presentes par Divers Savants à l’Academie des Sciences, 23 (1877), 241–680, Paris, France.
[2] D.J. Korteweg and G. de Vries, On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves, Philos. Mag., 39 (1895), 422–443. [Web]
[3] T.B. Benjamin, J.L. Bona and J.J. Mahony, Model equations for long waves in nonlinear dispersive systems, Philos. Trans. R. Soc. Lond. Ser. A, 272 (1972), 47–78. [CrossRef]
[4] D.H. Peregrine, Calculations of the development of an undular bore, J. Fluid Mech., 25(2) (1966), 321–330. [CrossRef] [Scopus]
[5] D.H. Peregrine, Long waves on a beach, J. Fluid Mech., 27(4) (1967), 815–827. [CrossRef] [Scopus]
[6] N.J. Zabusky, A synergetic approach to problem of nonlinear dispersive wave propagation and interaction, in: W. Ames (Ed.), Proc. Symp. Nonlinear Partial Differential Equations, Academic Press, 1967, 223–258. [CrossRef]
[7] B. Fornberg and G.B. Whitham, A numerical and theoretical study of certain nonlinear wave phenomena, Philos. Trans. R. Soc. Lond., 289 (1978), 373–404. [CrossRef] [Scopus]
[8] N.J. Zabusky and M.D. Kruskal, Interaction of solitons in a collisionless plasma and the recurrence of initial states, Phys. Rev. Lett., 15(6) (1965), 240–243. [CrossRef] [Scopus]
[9] C.S. Gardner, J. M. Green, M. D. Kruskal and R. M. Miura, Method for solving the Korteweg–de Vries equation, Phys. Rev., 19 (1967), 1095. [CrossRef]
[10] T.B. Benjamin, J.L. Bona and J.J. Mahony, Model equations for long waves in non-linear dispersive systems, Phil. Trans. R. Soc. Lond. Ser. A, 272 (1972), 47–78. [CrossRef]
[11] L.R.T. Gardner, G.A. Gardner and A. Doğan, A least squares finite element scheme for the RLW equation, Commun. Numer. Methods Eng., 12(11) (1996), 795–804. [CrossRef]
[12] K. Omrani, The convergence of the fully discrete Galerkin approximations for the Benjamin–Bona–Mahony (BBM) equation, Appl. Math. Comput., 180 (2006), 614–621. [CrossRef]
[13] K.R. Raslan, A computational method for the regularized long wave (RLW) equation, Appl. Math. Comput., 167(2) (2005), 1101–1118. [CrossRef]
[14] I. Dağ, B. Saka and D. Irk, Galerkin method for the numerical solution of the RLW equation using quintic B-splines, J. Comput. Appl. Math., 190(1–2) (2006), 532–547. [CrossRef]
[15] I. Dağ and M.N. Özer, Approximation of the RLW equation by the least square cubic B-spline finite element method, Appl. Math. Model., 25(3) (2001), 221–231. [CrossRef]
[16] A.A. Soliman and M.H. Hussien, Collocation solution for RLW equation with septic spline, Appl. Math. Comput., 161(2) (2005), 623–636. [CrossRef]
[17] P. Rosenau, A quasi-continuous description of a nonlinear transmission line, Phys. Scripta, 34(6) (1986), 827–829. [CrossRef]
[18] T. Ak, S.B.G. Karakoç and H. Triki, Numerical simulation for treatment of dispersive shallow water waves with Rosenau–KdV equation, Eur. Phys. J. Plus, 131(10) (2016), 1–15. [CrossRef]
[19] T. Ak, S. Dhawan, S.B.G. Karakoç, S.K. Bhowmik and K.R. Raslan, Numerical study of Rosenau–KdV equation using finite element method based on collocation approach, Math. Model. Anal., 22(3) (2017), 373–388. [CrossRef]
[20] P. Rosenau, Dynamics of dense discrete systems, Prog. Theor. Phys., 79(5) (1988), 1028–1042. [CrossRef]
[21] M.A. Park, On the Rosenau equation, Math. Appl. Comput., 9 (1990), 145–152. [Web of Science]
[22] M.A. Park, Pointwise decay estimate of solutions of the generalized Rosenau equation, J. Korean Math. Soc., 29 (1992), 261–280.
[23] P.K. Barreta, C.S.Q. Caldas, P. Gamboa and J. Limaco, Existence of solutions to the Rosenau and Benjamin–Bona–Mahony equation in domains with moving boundary, Electron. J. Differ. Equ., 2004(35) (2004), 1–12. [Scopus]
[24] S.K. Chung and S.N. Ha, Finite element Galerkin solutions for the Rosenau equation, Appl. Anal., 54(2) (1994), 39–56. [CrossRef] [Scopus]
[25] S.K. Chung, Finite difference approximate solutions for the Rosenau equation, Appl. Anal., 69(2) (1998), 149–156. [CrossRef] [Scopus]
[26] K. Omrani, F. Abidi, T. Achouri and N. Khiari, A new conservative finite difference scheme for the Rosenau equation, Appl. Math. Comput., 201(2) (2008), 35–43. [CrossRef] [Scopus] [Web of Science]
[27] S.A.V. Manickam, A.K. Pani and S.K. Chung, A second-order splitting combined with orthogonal cubic spline collocation method for the Rosenau equation, Numer. Methods Partial Differ. Equ., 14(6) (1998), 695–716. [CrossRef] [Scopus] [Web of Science]
[28] S.M. Choo, S.K. Chung and K.I. Kim, A discontinuous Galerkin method for the Rosenau equation, Appl. Numer. Math., 58(6) (2008), 783–799. [CrossRef] [Scopus] [Web of Science]
[29] M.A. Helal, Soliton solution of some nonlinear partial differential equations and its applications in fluid mechanics, Chaos Solitons Fractals, 13(9) (2002), 1917–1929. [CrossRef] [Scopus] [Web of Science]
[30] P. Rosenau and J.M. Hyman, Compactons: Solitons with finite wavelength, Phys. Rev. Lett., 70(5) (1993), 564–567. [CrossRef] [Scopus] [Web of Science]
[31] F. Rus and F.R. Villatoro, Self-similar radiation from numerical Rosenau–Hyman compactons, J. Comput. Phys., 227(1) (2007), 440–454. [CrossRef] [Scopus] [Web of Science]
[32] O.S. Iyiola, G.O. Ojo and O. Mmaduabuchi, The fractional Rosenau–Hyman model and its approximate solution, Alexandria Eng. J., 55(2) (2016), 1655–1659. [CrossRef] [Scopus] [Web of Science]
[33] A. Ludu and J.P. Draayer, Patterns on liquid surfaces: cnoidal waves, compactons and scaling, Physica D, 123(1-4) (1998), 82–91. [CrossRef] [Scopus] [Web of Science]
[34] A.S. Kovalev and M.V. Gvozdikova, Bose gas with nontrivial particle interaction and semiclassical interpretation of exotic solitons, Low Temp. Phys., 24(7) (1998), 484–490. [CrossRef] [Scopus] [Web of Science]
[35] A.L. Bertozzi and M. Pugh, The lubrication approximation for thin viscous films: regularity and long time behavior of weak solutions, Commun. Pure Appl. Math., 49(2) (1996), 85–123. [CrossRef] [Scopus] [Web of Science]
[36] V. Kardashov, S. Einav, Y. Okrent and T. Kardashov, Nonlinear reaction–diffusion models of self-organization and deterministic chaos, Discrete Dyn. Nat. Soc., 2006 (2006), 98959. [CrossRef] [Scopus] [Web of Science]
[37] J. de Frutos, M.A. Lopez-Marcos and J.M. Sanz-Serna, A finite difference scheme for the K(2,2) compacton equation, J. Comput. Phys., 120(2) (1995), 248–252. [CrossRef] [Scopus] [Web of Science]
[38] F. Rus and F.R. Villatoro, Pade numerical method for the Rosenau–Hyman compacton equation, Math. Comput. Simul., 76(1-3) (2007), 188–197. [CrossRef] [Scopus] [Web of Science]
[39] B. Mihaila, A. Cardenas, F. Cooper and A. Saxena, Stability and dynamical properties of Rosenau–Hyman compactons using Pade approximants, Phys. Rev. E, 81 (2010), 056708. [CrossRef]
[40] A. Cardenas, B. Mihaila, F. Cooper and A. Saxena, Properties of compacton–anticompacton collisions, Phys. Rev. E, 83(6) (2011), 066705. [CrossRef] [Scopus] [Web of Science]
[41] P. Rosenau, Compact and noncompact dispersive patterns, Phys. Lett. A, 275(3) (2000), 193–203. [CrossRef] [Scopus] [Web of Science]
[42] A. Chertock and D. Levy, Particle methods for dispersive equations, J. Comput. Phys., 171(2) (2001), 708–730. [CrossRef] [Scopus] [Web of Science]
[43] D. Levy, C.W. Shu and J. Yan, Local discontinuous Galerkin methods for nonlinear dispersive equations, J. Comput. Phys., 196(2) (2004), 751–772. [CrossRef] [Scopus] [Web of Science]
[44] M.S. Ismail and T.R. Taha, A numerical study of compactons, Math. Comput. Simul., 47(6) (1998), 519–530. [CrossRef] [Scopus] [Web of Science]
[45] P. Saucez, A. Vande Wouwer, W.E. Schiesser and P. Zegeling, Method of lines study of nonlinear dispersive waves, J. Comput. Appl. Math., 168(1-2) (2004), 413–423. [CrossRef] [Scopus] [Web of Science]
[46] R.Y. Molliq and M.S. Noorani, Solving the fractional Rosenau–Hyman equation via variational iteration method and homotopy perturbation method, Int. J. Differ. Equ., 2012 (2012), Article ID 472030. [CrossRef] [Scopus] [Web of Science]
[47] A. Akgül, A.I. Aliyu, M. Inç, A. Yusuf and D. Baleanu, Approximate solutions to the conformable Rosenau–Hyman equation using the two-step Adomian decomposition method with Padé approximation, Math. Methods Appl. Sci., 43(13) (2020), 7632–7639. [CrossRef] [Scopus] [Web of Science]
[48] S.O. Ajibola, A.S. Oke and W.N. Mutuku, LHAM approach to fractional order Rosenau–Hyman and Burgers’ equations, Asian Res. J. Math., 16(6) (2020), 1–4. [Web]
[49] F. Mirzaee and N. Samadyar, Combination of finite difference method and meshless method based on radial basis functions to solve fractional stochastic advection–diffusion equations, Eng. Comput., 36(4) (2019), 1673–1686. [CrossRef] [Scopus] [Web of Science]
[50] N. Samadyar, Y. Ordokhani and F. Mirzaee, The couple of Hermite-based approach and Crank–Nicolson scheme to approximate the solution of the two-dimensional stochastic diffusion–wave equation of fractional order, Eng. Anal. Bound. Elem., 118 (2020), 285–294. [CrossRef] [Scopus] [Web of Science]
[51] F. Mirzaee and N. Samadyar, Parameters estimation of HIV infection model of CD4+ T-cells by applying orthonormal Bernstein collocation method, Int. J. Biomath., 11(02) (2018), 1850020. [CrossRef] [Scopus] [Web of Science]
[52] H. Dehestani, Y. Ordokhani and M. Razzaghi, On the applicability of Genocchi wavelet method for different kinds of fractional-order differential equations with delay, Numer. Linear Algebra Appl., 26(5) (2019), e2259. [CrossRef] [Scopus] [Web of Science]
[53] H. Dehestani, Y. Ordokhani and M. Razzaghi, Combination of Lucas wavelets with Legendre–Gauss quadrature for fractional Fredholm–Volterra integrodifferential equations, J. Comput. Appl. Math., 382 (2021), 113070. [CrossRef] [Scopus]
[54] S. Kumbinarasaiah, Numerical solution for the (2 + 1)-dimensional Sobolev and regularized long wave equations arising in fluid mechanics via wavelet technique, Partial Differ. Equ. Appl. Math., 3 (2021), 100016. [CrossRef] [Scopus]
[55] S. Kutluay, N.M. Yağmurlu and A.S. Karakaş, A new perspective for simulations of equal-width wave equation, Comput. Methods Differ. Equ., (2025). [CrossRef]
[56] S. Kutluay, N.M. Yağmurlu and A.S. Karakaş, A novel perspective for simulations of the modified equal-width wave equation by cubic Hermite B-spline collocation method, Wave Motion, 129 (2024), 103342. [CrossRef] [Scopus] [Web of Science]
[57] P.M. Prenter, Splines and Variational Methods, John Wiley & Sons, New York, U.S.A., (1975). [Web]
[58] S.K. Bhowmik, R. Belbakir, T.Z. Boulmezaoud and S. Mziou, Solving two-dimensional second-order elliptic equations in exterior domains using the inverted finite elements method, Comput. Math. Appl., 67(10) (2014), 2027–2038.
[59] S.K. Bhowmik and A.K. Jakobin, High-accurate numerical schemes for Black–Scholes models with sensitivity analysis, J. Math., 2022 (2022), Article ID 4488082. [CrossRef] [Scopus] [Web of Science]
[60] H. Gomez and L. De Lorenzis, The variational collocation method, Comput. Methods Appl. Mech. Engrg., 309 (2016), 152–181. [CrossRef] [Scopus] [Web of Science]
[61] S.K. Bhowmik, Piecewise polynomial approximation of a nonlocal phase transitions model, J. Math. Anal. Appl., 420(2) (2014), 1069–1094. [CrossRef] [Scopus] [Web of Science]
[62] S. Dhawan, S.K. Bhowmik and S. Kumar, Galerkin least-square B-spline approach toward advection–diffusion equation, Appl. Math. Comput., 261 (2015), 128–140. [CrossRef] [Scopus] [Web of Science]
[63] T. Ak, S. Dhawan, S.B.G. Karakoç, S.K. Bhowmik and K.R. Raslan, Numerical study of Rosenau–KdV equation using finite element method based on collocation approach, Math. Modelling Anal., 22(3) (2017), 373–388. [CrossRef] [Scopus] [Web of Science]
[64] M. Çınar, A. Seçer and M. Bayram, An application of Genocchi wavelets for solving the fractional Rosenau–Hyman equation, Alexandria Eng. J., 60(6) (2021), 5331–5340. [CrossRef] [Scopus] [Web of Science]
[65] S. Kumbinarasaiah and M. Mulimani, The Fibonacci wavelets approach for the fractional Rosenau–Hyman equations, Results Control Optim., 11 (2023), 100221. [CrossRef]
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Derya Yıldırım Sucu

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
