A Note on Fractional Parametric-Type Laplace Transforms
DOI:
https://doi.org/10.62298/advmath.33Keywords:
Parametric exponential functions, Laguerre-type exponentials, Generalized Blissard problem, Laplace transform theoryAbstract
In recent articles an extension of the exponential function including one or several parameters have been exploited to introduce generalized forms of linear dynamical systems, including population dynamics models, and some graphical curves and Chebyshev functions. In this article, by means of the Blissard problem we define the reciprocal of parametric or fractional parametric-type exponentials in order to define new-type Laplace transforms. Some examples are shown, derived by the second author using the computer algebra system Mathematica.
References
[1] G. Dattoli and P. E. Ricci, Laguerre-type exponentials and the relevant L-circular and L-hyperbolic functions, Georgian Math. J., 10 (2003), 481–494. [CrossRef] [Scopus]
[2] V. Kiryakova, Generalized Fractional Calculus and Applications, Pitman Res. Notes in Math. Ser., 301, Longman, Harlow, U.K., (1994). [Web]
[3] D. Caratelli, P. Natalini and P.E. Ricci, Fractional Bernoulli and Euler numbers and related fractional polynomials. A symmetry in number theory, Symmetry, 15 (2023), 1900. [CrossRef] [Scopus] [Web of Science]
[4] P.E. Ricci, R. Srivastava and D. Caratelli, Laguerre-type Bernoulli and Euler numbers and related fractional polynomials, Mathematics, 12 (2024), 381. [CrossRef] [Scopus] [Web of Science]
[5] R. Gorenflo, A.A. Kilbas, F. Mainardi and S.V. Rogosin, Mittag-Leffler functions: Related topics and applications, Springer, New York, (2014). [CrossRef]
[6] H.M. Srivastava and H.L. Manocha, A Treatise on Generating Functions, J. Wiley & Sons, New York, (1984). [Web]
[7] G. Dattoli, P.E. Ricci and C. Cesarano, On a class of polynomials generalizing the Laguerre family, J. Concr. Applic. Math., 3 (2005), 405–412. [Web]
[8] P.E. Ricci and I. Tavkhelidze, An introduction to operational techniques and special polynomials, J. Math. Sci., 157(1) (2009). [CrossRef] [Scopus]
[9] A.P. Ditkin and V.A. Prudnikov, Integral Transforms and Operational Calculus, Pergamon Press, Oxford, U.K., (1965). [Web]
[10] I. Dimovski, Operational calculus for a class of differential operators, C. R. Acad. Bulgare Sci., 10 (1966), 1111–1114.
[11] P. Delerue, Sur le calcul symbolique à n variables et fonctions hyper-besséliennes (II), Ann. Soc. Sci. Bruxelles, Ser. 1, 3 (1953), 229–274.
[12] L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions, Reidel Publishing Company, (1974). [Web]
[13] J. Riordan, An Introduction to Combinatorial Analysis, J. Wiley & Sons, Chichester, (1958). [Web]
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Pierpaolo Natalini, Diego Caratelli, Paolo Emilio Ricci

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
