A Probabilistic Approach to Frobenius-Genocchi Polynomials Derived From Polyexponential Function Associated With Their Certain Applications

Authors

DOI:

https://doi.org/10.62298/advmath.31

Keywords:

Moment generating function, Probabilisitic Frobenius-Genocchi polynomials, Polyexponential-Frobenius-Genocchi polynomials, Random variables

Abstract

In this paper, we introduce probabilistic extensions of polyexponential-Frobenius-Genocchi polynomials. By making use of their generating functions, we derive new and interesting identities among aforementioned polynomials and probabilistic Frobenius-Euler polynomials, the Stirling numbers of the first and second kinds, probabilistic Frobenius-Genocchi polynomials, Bernoulli polynomials of the second kinds, Daehee polynomials, polyexponential probabilistic Bernoulli and polyexponential probabilistic Genocchi polynomials. In special cases, the obtained results reduce to the classical ones. Additionally, by picking suitable random variables, we also obtain new relations involving the Stirling numbers of the first and second kinds, and the Frobenius-Euler numbers.

References

[1] D.S. Kim and T. Kim, A Note on Polyexponential and Unipoly Functions. Russ. J. Math. Phys., 26(1) (2019), 40–49. [CrossRef] [Scopus] [Web of Science]

[2] S. Aracı, A new class of Bernoulli polynomials attached to polyexponential functions and related identities, Adv. Stud. Contemp. Math., 2021, 195-204, 31(2), 19 - 204. [Web]

[3] W.A. Khan, K. Ayesha and I.A. Khan, Degenerate polyexponential-Genocchi numbers and polynomials, J. Math. Comput. Sci, 22(4) (2021), 381-381. [CrossRef] [Scopus] [Web of Scine]

[4] R.B. Corcino, C.B. Corcino and W.A. Khan, Exploring Type 2 Frobenius-Type Poly-Euler Polynomials, J. Inequal. Spec. Funct., 15(4) (2024), 1-14. [CrossRef] [Scopus] [Web of Scine]

[5] U. Duran, M. Açıkgöz and S. Aracı, Construction of the type 2 poly-Frobenius–Genocchi polynomials with their certain applications, Adv. Differ. Equ., 2020(1) (2020), 432. [CrossRef] [Scopus] [Web of Scine]

[6] T. Kim, D.S. Kim, H.Y. Kim and L.C. Jang, Degenerate poly-Bernoulli numbers and polynomials, Informatica, 31(3) (2020), 2-8. [Web]

[7] P. Xue, Y. Ma, T. Kim, D.S. Kim and W. Zhang, Probabilistic degenerate poly-Bell polynomials associated with random variables, Math. Comput. Model. Dyn. Syst., 31(1) (2025), 2497367. [CrossRef] [Scopus] [Web of Scine]

[8] S.H. Lee, Probabilistic Degenerate Poly r-Stirling Numbers of the Second Kind and r-Bell Polynomials, Eur. J. Pure Appl. Math, 18(2) (2025), [CrossRef] [Scopus] [Web of Scine]

[9] S. Aracı, Degenerate poly-type 2-Bernoulli polynomials, Math. Sci. Appl. E-Notes, 9(1) (2021), 1-8. [CrossRef] [Scopus]

[10] S. Aracı and M. Açıkgöz, A note on the Frobenius-Euler numbers and polynomials associated with Bernstein polynomials, Adv. Stud. Contemp. Math., 22(3) (2012), 399-406. [CrossRef] [Scopus] [Web of Scine]

[11] M. Ma and D. Lim, A note on polyexponential and unipoly Bernoulli polynomials of the second kind, Open Math., 19(1) (2021), 869-877. [CrossRef] [Scopus] [Web of Scine]

[12] J.A. Adell and A. Lekuona, A probabilistic generalization of the Stirling numbers of the second kind, J. Number Theory, 194(1) (2019), 335-355. [CrossRef] [Scopus] [Web of Scine]

[13] J.A. Adell, Probabilistic Stirling numbers of the second kind and applications, J. Theor. Probab., 35(1) (2022), 636-652. [CrossRef] [Scopus] [Web of Scine]

[14] T. Kim and D.S. Kim, Explicit Formulas for Probabilistic Multi-Poly-Bernoulli Polynomials and Numbers, Russ. J. Math. Phys., 2024, 31(3) (2024), 450–460. [CrossRef] [Scopus] [Web of Scine]

[15] A. Karagenç, M. Açıkgöz and S. Araci Exploring probabilistic Bernstein polynomials: identities and applications, Appl. Math. Sci. Eng., 32(1) (2024), 2398591. [CrossRef] [Scopus] [Web of Scine]

[16] S. Aracı and M. Açıkgöz, Construction of Fourier expansion of Apostol Frobenius–Euler polynomials and its applications, Adv. Differ. Equ., 2018(1) (2018), 67. [CrossRef] [Scopus] [Web of Scine]

[17] A. Karagenç, M. Açıkgöz and S. Aracı, A new family of q-Bernstein polynomials: Probabilistic viewpoint, Arab J. Basic Appl. Sci., 32(1) (2025), 42-50. [CrossRef] [Scopus]

[18] A. Karagenç, M. Açıkgöz and S. Aracı, Poly-Frobenius-Genocchi Polynomials: A Probabilistic Perspective with Applications Appl. Math. Inf. Sci., 19(4) (2025), 891-898. [CrossRef] [Scopus]

[19] S.K. Sharma, W.A. Khan, S. Aracı and S.S. Ahmed, New type of degenerate Daehee polynomials of the second kind, Adv. Differ. Equ., 2020(1), 428. [CrossRef] [Scopus] [Web of Scine]

[20] W.A. Khan, U. Duran and N. Ahmad, Probabilistic degenerate Jindalrae and Jindalrae-Stirling polynomials of the second kind, J. Nonlinear Convex Anal., 26(4) (2025), 941-961. [Scopus] [Web of Scine]

Downloads

Published

30.06.2025

How to Cite

Karagenç, A., Açıkgöz, M., & Aracı, S. (2025). A Probabilistic Approach to Frobenius-Genocchi Polynomials Derived From Polyexponential Function Associated With Their Certain Applications. Advances in Analysis and Applied Mathematics, 2(1), 44–57. https://doi.org/10.62298/advmath.31