A Note on Generalized Bell-Appell Polynomials

Authors

DOI:

https://doi.org/10.62298/advmath.8

Keywords:

Bell Polynomials, Generalized Bell Polynomials, Appell Polynomials, Bernoulli Polynomials, Euler Polynomials, Generating Function, Determinant Representation

Abstract

This paper aims to establish a new hybrid class of special polynomials, namely, the generalized Bell-Appell polynomials. The idea of the monomiality principle is used to construct the generating function for the generalized Bell-Appell polynomials. Certain related identities and properties are also considered. The determinant representation is also derived. Further, we present some special cases of generalized Bell-Appell family and investigate the corresponding results.

References

[1] S. Benbernou, S. Gala and M.A. Ragusa, On the regularity criteria for the 3D magnetohydrodynamic equations via two components in terms of BMO space, Math. Methods Appl. Sci., 37(15) (2014), 2320–2325. [CrossRef] [Scopus] [Web of Science]

[2] E.T. Bell, Exponential polynomials, Ann. Math., 35 (1934), 258–277. [CrossRef]

[3] R.B. Boas and R.C. Buck, Polynomial Expansions of Analytic Functions, Springer, Berlin, (2013). [CrossRef]

[4] J. Sándor and B. Crstici, Handbook of Number Theory, Handbook of Number Theory, vol. II. Kluwer Academic Publishers, Dordrecht, 2004. [CrossRef]

[5] F. Avram and M.S. Taqqu, Noncentral limit theorems and Appell polynomials, Ann. Probab., 15(2) (1987), 767–775. [CrossRef] [Web of Science]

[6] D. Levi, P. Tempesta and P. Winternitz, Umbral calculus, difference equations and the Schrödinger equation, J. Math. Phys., 45(11) (2004), 4077–4105. [CrossRef] [Scopus] [Web of Science]

[7] P. Tempesta, Formal groups, Bernoulli-type polynomials and L-series, C. R. Acad. Sci. Paris, Ser., 345(6) (2007),303–306. [CrossRef] [Scopus] [Web of Science]

[8] U. Duran, S. Aracı and M. Açıkgöz, Bell-based Bernoulli polynomials with applications, Axioms, 10(1) (2021), 29. [CrossRef] [Scopus] [Web of Science]

[9] U. Duran and M. Açıkgöz, Bell-based Genocchi polynomials, New Trends Math. Sci., 9(1) (2021), 50–55. [CrossRef]

[10] L. Carlitz, Some remarks on the Bell numbers, Fibonacci Quart., 18(1) (1980), 66–73. [CrossRef] [Web of Science]

[11] D.S. Kim and T. Kim, Some identities of Bell polynomials, Sci. China Math., 58(10) (2015), 2095–2104. [CrossRef] [Scopus] [Web of Science]

[12] R.A. Al-Jawfi, A. Muhyi and W.F.H. Al-shameri, On generalized class of Bell polynomials associated with geometric applications, Axioms, 13(2) (2024), 73. [CrossRef] [Web of Science]

[13] L.C. Andrews, Special Functions for Engineers and Applied Mathematics, Macmillan Publishing Company, New York, (1985). [Web]

[14] H.M. Srivastava and H.L. Manocha, A trestise on generating functions, Halested Press-Ellis Horwood Limited-Jon Wiely and Sons, New York-Chichester-Srisbane-Toronto, (1984). [CrossRef]

[15] Z. Özat, M.A. Özarslan and B. Çeki̇m On Bell based Appell polynomials, Turkish J. Math., 47(4) (2023), 1099–1128. [CrossRef] [Scopus] [Web of Science]

[16] F A. Costabile, F. Dell’Accio and M.I. Gualtieri, A new approach to Bernoulli polynomials, Rend. Mat. Appl., 26(1) (2006), 1-12. [Web]

[17] F.A. Costabile and E. Longo, A determinantal approach to Appell polynomials, J. Comput. Appl. Math., 234(5) (2010), 1528-1542. [CrossRef] [Scopus] [Web of Science]

[18] F.A. Costabile and E. Longo, An algebraic approach to Sheffer polynomial sequences, Integral Transforms Spec. Funct., 25(4) (2013), 295-311. [CrossRef] [Scopus] [Web of Science]

[19] D. Cocolicchio, G. Dattoli and H.M. Srivastava (Editors), Advanced special functions and applications (Proceedings of the First Melfi School on Advanced Topics in Mathematics and Physics; Melfi, Italy, May 9-12, 1999), Aracne Editrice, Rome, (2000).

[20] M. Fadel and A. Muhyi, On a family of q-modified-Laguerre-Appell polynomials, Arab J. Basic Appl. Sci., 31(1) (2024), 165–176. [CrossRef] [Scopus]

[21] A. Muhyi and S. Aracı A note on q-Fubini-Appell polynomials and related properties, J. Funct. Spaces, 2021 (2022), 1–9. [CrossRef] [Scopus] [Web of Science]

[22] A. Muhyi, A new class of Gould-Hopper-Eulerian-type polynomials, Appl. Math. Sci. Eng., 30(1) (2022), 283–306. [CrossRef] [Scopus] [Web of Science]

[23] H.M. Srivastava, M.A. Özarslan and B. Yılmaz, Some families of differential equations associated with the Hermite-based Appell polynomials and other classes of Hermite-based polynomials, Filomat, 28(4) (2014), 695–708. [CrossRef] [Scopus] [Web of Science]

[24] G. Yasmin, H. Islahi and A. Muhyi, Certain results on a hybrid class of the Boas-Buck polynomials, Adv. Differ. Equ., 2020(1) (2020), 1–21. [CrossRef] [Scopus] [Web of Science]

[25] H.M. Srivastava, R. Srivastava, A. Muhyi, G. Yasmin, H. Islahi and S. Aracı, Construction of a new family of Fubini-type polynomials and its applications, Adv. Differ. Equ., 2021(1) (2021), 1–25. [CrossRef] [Scopus] [Web of Science]

[26] G. Yasmin and A. Muhyi, Certain results of hybrid families of special polynomials associated with Appell sequences, Filomat, 33(12) (2019), 3833–3844. [CrossRef] [Scopus] [Web of Science]

[27] H.M. Srivastava, S. Aracı, W.A. Khan and M. Açıkgöz, A note on the truncated-exponential based Apostol-type polynomials, Symmetry, 11(4) (2019), 1-20. [CrossRef] [Scopus] [Web of Science]

[28] G. Yasmin and A. Muhyi, Extended forms of Legendre-Gould-Hopper-Appell polynomials, Adv. Stud. Contemp. Math., 29(4) (2019), 489–504. [CrossRef] [Scopus]

[29] S. Khan and N. Raza, General-Appell polynomials within the context of monomiality principle, Int. J. Anal., 3013 (2013), 1–11. [CrossRef] [Web of Science]

[30] E.D. Rainville, , Reprint of 1960 first edition. Chelsea Publishig Co., Bronx, New York, (1971).

Downloads

Published

31.12.2024

How to Cite

Muhyi, A. (2024). A Note on Generalized Bell-Appell Polynomials. Advances in Analysis and Applied Mathematics, 1(2), 90–100. https://doi.org/10.62298/advmath.8