Numerical Solution of Time Fractional Klein-Gordon Equation in Framework of the Yang-Abdel-Cattani Fractional Derivative Operator

Authors

DOI:

https://doi.org/10.62298/advmath.12

Keywords:

Klein-Gordon Equations, Yang Abdel Cattani Fractional Derivative Operator, Existence and Uniqueness

Abstract

This paper investigates the analytical results of both linear and nonlinear time-fractional Klein-Gordon equations using the novel Yang-Abdel-Cattani derivative operator. In order to solve the proposed time-fractional Klein-Gordon equations, we applied the Laplace Adomian decomposition technique. The effectiveness of this operator is demonstrated through three test problems. These include both linear and nonlinear time-fractional Klein-Gordon equations. Furthermore, the influence of different fractional Brownian motion values on the solution profiles is analyzed and presented graphically.

References

[1] K.S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, (1993). [CrossRef]

[2] D. Baleanu, J.A.T. Machado and A.C. Luo, Fractional Dynamics and Control, Springer, (2012). [CrossRef] [Scopus]

[3] E. Goldfain, Fractional dynamics, Cantorian space-time and the gauge hierarchy problem, Chaos Solitons Fract., 22(3) (2004) 513–520. [CrossRef] [Scopus] [Web of Science]

[4] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, San Diego: Elsevier, 2006. [Web]

[5] D. Baleanu and R.P. Agarwal, Fractional calculus in the sky, Adv. Differ. Equ., 2021(117) (2021). [CrossRef] [Scopus] [Web of Science]

[6] G. Adomian, A review of the decomposition method and some recent results for nonlinear equation, Math. Comput. Model., 13(7) (1990), 17-43. [CrossRef] [Scopus] [Web of Science]

[7] G. Adomian and R. Rach, Noise terms in decomposition series solution, Comput. Math. Appl., 24(11) (1992), 61-64. [CrossRef] [Scopus] [Web of Science]

[8] V. Daftardar-Gejji and H. Jafari, Adomian decomposition: a tool for solving a system of fractional differential equations, J. Math. Anal. Appl., 301(2) (2005), 508-518. [CrossRef] [Scopus] [Web of Science]

[9] A.M. Wazwaz, The tanh and the sine-cosine methods for compact and non-compact solutions of the nonlinear Klein-Gordon equation, Appl. Math. Comput., 167(2) (2005), 1179-1195 [CrossRef] [Scopus] [Web of Science]

[10] A.M. Wazwaz, New travelling wave solutions to the Boussinesq and Klein-Gordon equations, Commun. Nonlinear Sci. Numer. Simul., 13(5) (2008), 889-901 [CrossRef] [Scopus] [Web of Science]

[11] S.Z. Rida, H.M. El-sherbiny and A.A.M. Arafa, On the solution of the fractional nonlinear Schrodinger equation, Phys. Lett. A: Gen. At. Solid State Phys., 372(2) (2008), 553-558. [CrossRef] [Scopus] [Web of Science]

[12] T. Sitthiwirattham, R. Gul, K. Shah, I. Mahariq, J. Soontharanon and K.J. Ansari, Study of implicit-impulsive differential equations involving Caputo-Fabrizio fractional derivative, AIMS Math., 7(3), (2022), 4017-4037. [CrossRef] [Scopus] [Web of Science]

[13] A. Ullah, K.J. Ansari and A. Ullah, Advancing non-linear PDE’s solutions: modified Yang transform method with Caputo-Fabrizio fractional operator, Phys. Scr., 99(12) (2024), 125291. [CrossRef] [Scopus] [Web of Science]

[14] F. Usta, H. Budak and M.Z. Sarıkaya, Yang-Laplace transform method Volterra and Abel’s integro-differential equations of fractional order, Int. J. Nonlinear Anal. Appl., 9(2) (2018), 203-214. [CrossRef] [Scopus] [Web of Science]

[15] Z. Bouazza, M.S. Souid, A. Benkerrouche and A. Yakar, Solvability of quadratic integral equations of Urysohn type involving Hadamard variable-order operator, Fundam. J. Math. Appl., 7(2) (2024), 108-117. [CrossRef]

[16] V. Kumar, On a generalized Mittag-Leffler function and fractional Integrals, Fundam. J. Math. Appl., 7(1) (2024), 12-25. [CrossRef]

[17] A.K. Golmankhaneh, A.K. Golmankhaneh and D. Baleanu, On nonlinear fractional Klein–Gordon equation, Signal Process., 91(3) (2011), 446–451. [CrossRef] [Web of Science]

[18] M. Tamsir and V.K. Shrivastava, Analytical study of time fractional order Klein-Gordon equation. Alex. Eng. J., 55(1) (2016), 561-567. [CrossRef] [Scopus] [Web of Science]

[19] D. Kumar, J Singh, S Kumar and Sushila, Numerical computation of Klein Gordon equations arising in quantum field theory by using homotopy analysis transform method, Alex. Eng. J., 53(2) (2014), 469-474. [CrossRef] [Scopus] [Web of Science]

[20] A. Kumar and D. Baleanu, An analysis for Klein–Gordon equation using fractional derivative having Mittag–Leffler-type kernel, Math. Methods Appl. Sci., 44(7) (2021), 5458–5474. [CrossRef] [Scopus] [Web of Science]

[21] M. Mulimani and S.Kumbinarasaiah, A numerical study on the nonlinear fractional Klein–Gordon equation, J.Umm Al-Qura Univ. Appll. Sci., 10(1) (2024), 178–199. [CrossRef] [Scopus]

[22] X.J. Yang, M. Abdel-Aty and C. Cattani, A new general fractional-order derivative with Rabotnov fractional-exponential kernel applied to model the anomalous heat transfer, Therm. Sci., 23(3) (2019), 1677–1681. [CrossRef] [Scopus] [Web of Science]

[23] A.M. Wazwaz, Compacton solitons and periodic solutions for some forms of nonlinear Klein Gordon equations, Chaos Solitons Fract., 28(4) (2006), 1005–1013. [CrossRef] [Scopus] [Web of Science]

[24] P.J. Caudrey, I.C. Eilbeck and J.D. Gibbon, The sine-Gordon equation as a model classical field theory, Nuovo Cim., B, 25(2) (1975), 497–511. [CrossRef] [Scopus]

[25] D. Kaya and S.M. El-Sayed, A numerical solution of the Klein–Gordon equation and convergence of the domain decomposition method, Appl. Math. Comput., 156(2) (2004), 341–353. [CrossRef] [Scopus] [Web of Science]

[26] S.M. El-Sayed, The decomposition method for studying the Klein–Gordon equation, Chaos Solitons Fract., 18(5) (2003), 1025–1030. [CrossRef] [Scopus] [Web of Science]

[27] M. Aychluh, M. Ayalew, D.L. Suthar and S.D. Purohit, Numerical Solution of multi-dimensional Navior stoke equations using Yang Abdel Cattani Fractional Operator, Int. J. Ind. Math., In Press. [CrossRef] [Scopus] [Web of Science]

[28] R. Gorenflo, A.A. Kilbas, F. Mainardi and S.V. Rogosin, Mittag-Leffler Functions, Related Topics and Applications, Springer, (2014). [CrossRef]

[29] A.K. Shukla and J.C. Prajapati, On a generalization of Mittag-Leffler function and its properties, J. Math. Anal. Appl., 336(2) (2007) 797–811. [CrossRef] [Scopus] [Web of Science]

Downloads

Published

31.12.2024

How to Cite

Ayalew, M. (2024). Numerical Solution of Time Fractional Klein-Gordon Equation in Framework of the Yang-Abdel-Cattani Fractional Derivative Operator. Advances in Analysis and Applied Mathematics, 1(2), 126–139. https://doi.org/10.62298/advmath.12