On the Scaled Hypercomplex Numbers: Quaternions through Split Quaternions
DOI:
https://doi.org/10.62298/advmath.7Keywords:
Scaled Hypercomplex Rings, Scaled Hypercomplex Monoids, Dynamical Systems, Free ProbabilityAbstract
In this paper, we analyze a certain algebraic structure ℋ[−1, 1] containing all t-scaled hypercomplex numbers of ℍt where the scales t are from −1 to 1, i.e., −1 ≤ t ≤ 1 in ℝ. The algebraic, operator-theoretic, and operator-algebraic properties of ℋ[−1, 1] are studied under the local dynamics on the closed interval [−1, 1] inherited from the dynamics on the continuum ℝ. Also, some analytic properties of an interesting type of operators switching scales of hypercomplex numbers acting on ℋ[−1, 1] are considered, and we investigate how they affect the analysis on ℋ[−1, 1].
References
[1] D. Alpay and I. Cho, Operators induced by certain hypercomplex systems, Opuscula Math., 43(3) (2023), 275-333. [CrossRef] [Scopus] [Web of Science]
[2] D. Alpay, and I. Cho, On scaled hyperbolic numbers induced by scaled hypercomplex numbers, Pure Appl. Funct. Anal., (2023) To Appear.
[3] J. Voight, Quaternion Algebra, Springer Cham, (2019). [CrossRef]
[4] D. Alpay, M.E. Luna-Elizarraras, M. Shapiro, and D. Struppa, Gleason’s problem, rational functions and spaces of left-regular functions: the split-quaternioin settings, Israel J. Math., 226(1) (2018), 319-349. [CrossRef] [Scopus] [Web of Science]
[5] J. Cockle, On systems of algebra involving more than one imaginary, and on equations of the fifth degree, Philos. Mag., 35(238) (1849), 434 - 437. [CrossRef]
[6] M.L. Curtis, Matrix Groups, Published by Springer-Verlag, NY, (1979). [CrossRef]
[7] F.O. Farid, Q. Wang, and F. Zhang, On the eigenvalues of quaternion matrices, Linear Multilinear Algebra, 59(4) (2011), 451–473. [CrossRef] [Scopus] [Web of Science]
[8] W.R. Hamilton, Lectures on Quaternions, Cambridge University Press, (1853) [Web]
[9] I.L. Kantor and A.S. Solodnikov, Hypercomplex Numbers, an Elementary Introuction to Algebras, (1989) Published by Springer-VErlag (NY). [Web]
[10] V. Kravchenko, Applied Quaternionic Analysis, Heldemann Verlag, (2003). [Web]
[11] N. Mackey, Hamilton and Jacobi meet again: quaternions and the eigenvalue problem, SIAM J. Matrix Anal. Appl., 16(2) (1995), 421-435. [CrossRef] [Web of Science]
[12] S. Qaisar and L. Zou, Distribution for the standard eigenvalues of quaternion matrices, Int. Math. Forum, 7(17) (2012), 831-838. [Web]
[13] B.A. Rozenfeld, The History of non-Eucledean Geometry: Evolution of the Concept of a Geometric Spaces, Published by Springer, (1988). [CrossRef]
[14] A. Sudbery, Quaternionic Analysis, Math. Proc. Cambridge Philosop. Soc., (1998). [CrossRef]
[15] C. Flaut, Eigenvalues and eigenvectors for the quaternion matrices of degree two, An. St. Univ. Ovidius Constanta, 10(2) (2002), 39-44. [Web]
[16] P.R. Girard, Einstein’s equations and Clifford algebra, Adv. Appl. Clifford Algebras., 9(2) (1999), 225-230. [CrossRef]
[17] S.D. Leo, G. Scolarici and L. Solombrino, Quaternionic eigenvalue problem, J. Math. Phy., 43(11) (2002), 5815-5829. [CrossRef] [Scopus] [Web of Science]
[18] L. Rodman, Topics in Quaternion Linear Algebra, Prinston University Press, NJ, (2014). [CrossRef] [Scopus]
[19] L. Taosheng, Eigenvalues and eigenvectors of quaternion matrices, J. Central China Normal Univ., 29(4) (1995), 407 - 411.
[20] J.A. Vince, Geometric Algebra for Computer Graphics, Springer, (2008). [CrossRef] [Scopus]
[21] P.R. Halmos, Linear Algebra Problem Book, The Dolciani Mathematical Expositions, 16, Mathematical Association of America, Washington, DC, (1995). [Web]
[22] P.R. Halmos, A Hilbert Space Problem Book (Second Edition), Springer-Verlag, New York, (1982). [CrossRef]
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 ILWOO CHO
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.