Unveiling Multivariable Hermite-Based Genocchi Polynomials: Insights from Factorization Method

Authors

DOI:

https://doi.org/10.62298/advmath.6

Keywords:

Appell Polynomials, Multivariable-Hermite Polynomials, Recurrence Relation, Shift Operators, Differential Equations, Applications

Abstract

This paper presents novel polynomials resulting from the convolution of generalized multivariable Hermite polynomials and Genocchi polynomials. Investigating their properties, such as recurrence relations, explicit formulas utilizing shift operators, and differential equations, forms the core of our exploration. Moreover, we derive integro-differential and partial differential equations for these polynomials, thereby enriching the comprehension and applicability of these hybrid polynomials across diverse mathematical domains.

References

[1] L. Infeld and T.E. Hull, The factorization method, Rev. Mod. Phys., 23(1) (1951) 21-68. [CrossRef]

[2] G. Dattoli, Summation formulae of special functions and multivariable Hermite polynomials, Nuovo Cimento Soc. Ital. Fis., B 119 (5) (2004), 479-488. [CrossRef] [Scopus] [Web of Science]

[3] S.A. Wani and S. Khan, Certain properties and applications of the 2D Sheffer and related polynomials, Bol. Soc. Mat. Mex., 26(3) (2020), 947-971. [CrossRef] [Scopus] [Web of Science]

[4] S. Aracı, M. Riyasat, S.A. Wani and S. Khan, A new class of Hermite-Apostol type Frobenius-Genocchi polynomials and its applications, Symmetry, 10(11) (2018), 652. [CrossRef] [Scopus] [Web of Science]

[5] B.S.T. Alkahtani, I. Alazman and S.A. Wani, Some families of differential equations associated with multivariate Hermite polynomials, Fractal Fract., 7(5) (2023), 390. [CrossRef] [Scopus] [Web of Science]

[6] S.A. Wani and S. Khan, Properties and applications of the Gould-Hopper-Frobenius-Euler polynomials, Tbilisi Math. J., 12(1) (2019) 93-104 [CrossRef] [Web of Science]

[7] M. Zayed, S.A. Wani and A.M. Mahnashi, Certain properties and characterizations of multivariable Hermite-Based Appell polynomials via factorization method, Fractal Fract., 7(8) (2023), 605. [CrossRef] [Scopus] [Web of Science]

[8] M. Zayed, S.A. Wani and M.Y. Bhat, Unveiling the potential of Sheffer polynomials: exploring approximation features with Jakimovski–Leviatan operators, Mathematics, 11(16) (2023), 3604. [CrossRef] [Scopus] [Web of Science]

[9] S.A. Wani, Two-iterated degenerate Appell polynomials: properties and applications, Arab J. Basic Appl. Sci., 31(1) (2024), 83–92. [CrossRef] [Scopus]

[10] M. Zayed and S.A. Wani, A study on generalized degenerate form of 2D Appell polynomials via fractional operators, Fractal Fract., 7(10) (2023), 723. [CrossRef] [Scopus] [Web of Science]

[11] S. Khan and N. Raza, 2−Iterated Appell polynomials and related numbers, Appl. Math. Comput., 219(17) (2013) 9469-9483. [CrossRef] [Scopus] [Web of Science]

[12] S.A. Wani, S. Khan and S. Naikoo, Differential and integral equations for the Laguerre-Gould-Hopper based Appell and related polynomials, Bol. Soc. Mat. Mex., 26 (2020), 617–646. [CrossRef] [Scopus] [Web of Science]

[13] S. Khan, M. Riyasat and S.A. Wani, On some classes of diffrential equations and associated integral equations for the Laguerre-Appell polynomials, Adv. Pure Appl. Math., 9(3) (2018), 185–194. [CrossRef] [Scopus] [Web of Science]

[14] M. Riyasat, S.A. Wani and S. Khan, Differential and integral equations associated with some hybrid families of Legendre polynomials, Tbilisi Math. J., 11(1) (2018), 127-139. [CrossRef] [Web of Science]

[15] S. Aracı, M. Riyasat, S.A. Wani and S. Khan, Differential and integral equations for the 3-variable Hermite-Frobenius-Euler and Frobenius-Genocchi polynomials, App. Math. Inf. Sci., 11(5) (2017), 1335–1346 [CrossRef] [Scopus]

[16] M.X. He and P.E. Ricci, Differential equation of Appell polynomials via factorization method, J. Comput. Appl. Math., 139(2) (2002), 231-237. [CrossRef] [Scopus] [Web of Science]

[17] G. Bretti and P.E. Ricci, Multidimensional extension of the Bernoulli and Appell polynomials, Taiwanese J. Math. 8(3) (2004), 415-428. [CrossRef] [Scopus]

[18] B. Yılmaz and M.A. Özarslan, Differential equations for the extended 2D Bernoulli and Euler polynomials, Adv. Differ. Equ., 2013(107) (2013), 1-16. [CrossRef] [Scopus] [Web of Science]

[19] S. Khan and M. Riyasat, Differential and integral equations for the 2−iterated Appell polynomials, J. Comput. Appl. Math., 306 (2016), 116-132. [CrossRef] [Scopus] [Web of Science]

[20] M.A. Özarslan and B. Yılmaz, A set of finite order differential equations for the Appell polynomials, J. Comput. Appl. Math. 259(Part A) (2014), 108-116. [CrossRef] [Scopus] [Web of Science]

Downloads

Published

30.06.2024

How to Cite

Wani, S. A. (2024). Unveiling Multivariable Hermite-Based Genocchi Polynomials: Insights from Factorization Method. Advances in Analysis and Applied Mathematics, 1(1), 68–80. https://doi.org/10.62298/advmath.6