Subclasses of λ-Pseudo Starlike Functions With Respect to Symmetric Points Associated With Conic Region

Authors

DOI:

https://doi.org/10.62298/advmath.5

Keywords:

Analytic Functions, Bi-Univalent, Fekete-Szegö, Coeficient Inequalities, Starlike Functions and Convex Functions, Subordination

Abstract

The purpose of this paper is to introduce and study a new subclass ρτκs,Σλ(α, P(z)) of the class Σ of biunivalent functions defined in the unit disk, called λ-bi-pseudo-starlike, with respect to symmetric points associated with conic region impacted by Janowski functions. Further we determine the Fekete-Szego result for the function class.

References

[1] W.C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, In Proceedings of the Conference on Complex Analysis, Tianjin, China, 19–23 June 1992; Li, Z., Ren, F., Yang, L., Zhang, S., Eds., Conference Proceedings and Lecture Notes in Analysis, International Press: Cambridge, MA, USA, 1 (1994), 157–169. [Web of Science]

[2] O.T. Opoola, On a subclass of univalent functions defined by a generalized differential operator, Int. J. Math. Anal., 18(11) (2017), 869-876. [CrossRef]

[3] L. Bieberbach, Über dié Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln. Sitzungsberichte Preuss. Akad. Der Wiss. 138 (1916), 940–955.

[4] K.O. Babalola, On λ-pseudo-starlike functions, J. Class. Anal., 3(2) (2013), 137-147. [CrossRef]

[5] V. Ravichandran, Starlike and convex functions with respect to conjugate points, Acta Math. Acad. Paedagog. Nyházi. (N.S.), 20(1) (2004), 31-37. MR2129665 [Web]

[6] K.B. Sakaguchi, On a certain univalent mapping, J. Math. Soc. Japan, 11(1) (1959), 72-75. [CrossRef] [Scopus]

[7] Z.G. Wang, C.Y. Gao and S.M. Yuan, On certain subclasses of close-to-convex and quasi-convex functions with respect to k-symmetric points, J. Math. Anal. Appl., 322(1) (2006), 97-106. [CrossRef] [Scopus] [Web of Science]

[8] K.R. Karthikeyan, M. Ibrahim and S. Srinivasan, Fractional class of analytic functions defined using q-differential operator, Aust. J. Math. Anal. Appl., 15(1) (2018), 1-15. [Scopus]

[9] A.W. Goodman, Univalent Functions, Mariner Comp., (1983).

[10] C. Pommerenke, Univalent Functions, Studia Mathematica/ Mathematische Lehrbücher, Band XXV, Vandenhoeck & Ruprecht, Göttingen, (1975).

[11] H. Tang, K.R. Karthikeyan and G. Murugusundaramoorthy, Certain subclass of analytic functions with respect to symmetric points associated with conic region, AIMS Math., 6(11) (2021), 12863-12877. [CrossRef] [Scopus] [Web of Science]

[12] M. Ibrahim and K.R Karthikeyan, Unified solution of some properties related to λ-pseudo starlike functions, Contemp. Math., 4(4) (2023), 926-936. [CrossRef] [Scopus] [Web of Science]

Downloads

Published

30.06.2024

How to Cite

Ibrahim, M. (2024). Subclasses of λ-Pseudo Starlike Functions With Respect to Symmetric Points Associated With Conic Region. Advances in Analysis and Applied Mathematics, 1(1), 12–18. https://doi.org/10.62298/advmath.5