New Extension in Ostrowski's Type Inequalities by Using 13-Step Linear Kernel

Authors

DOI:

https://doi.org/10.62298/advmath.4

Keywords:

Ostrowski Inequality, Numerical Integration, 13-Step Linear Kernel

Abstract

In this paper, we present an extantion of Ostrowski’s inequalities by using newly derived identity. With the help of this inequality, we build up new results for ´y'∈ L1, ý'∈ L2, and ý''∈ L2. For this purpose, our approach utilizing Gr¨uss inequality, Diaz-Metcalf inequality and Cauchy inequality. To prove our main findings, we use a new extended kernal (13-step linear kernel), we produce some new useful results. At the end, we apply our results to numerical integration and cumulative distribution function.

References

[1] D.S. Mitrinovic, J.E. Pecaric and A.M. Fink, Inequalities Involving Functions and Their Integrals and Derivatives, Kluwer Academic Publishers, Dordrecht, The Netherlands, (1991). [CrossRef]

[2] D.S. Mitrinovic, J.E. Pecaric, and A.M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht, The Netherlands, (1993). [CrossRef] [Scopus] [Web of Science]

[3] D.S. Mitrinovic , J.E. Pecaric, and A.M. Fink, Inequalities for Functions and Their Integrals and Derivatives, Kluwer Academic Publishers, Dordrecht, The Netherlands, (1994).

[4] N.S. Barnett, P. Cerone, S.S. Dragomir, J. Roumeliotis and A. Sofo, A survey on Ostrowski type inequalities for twice differentiable mappings and applications, Inequal. Theory Appl., 1 (2001), 33-86.

[5] S. Hussain and A. Qayyum, A generalized Ostrowski-Grüss type inequality for bounded differentiable mappings and its applications, J. Inequal. Appl., 2013(1) (2013), 1-7. [CrossRef] [Scopus] [Web of Science]

[6] A. Qayyum, M. Shoaib, A.E. Matouk and M.A. Latif, On new generalized Ostrowski type integral inequalities, Abstr. Appl. Anal., 2014 (2014), 275806. [CrossRef] [Scopus] [Web of Science]

[7] A. Qayyum, I. Faye, M. Shoaib and M.A. Latif, A generalization of Ostrowski type inequality for mappings whose second derivatives belong to L1(a, b) and applications, Int. J. Pure Appl. Math., 98(2) (2015), 169-180. [CrossRef] [Scopus]

[8] A. Qayyum, M. Shoaib and I. Faye, Some new generalized results on Ostrowski type integral inequalities with application, J. Comput. Anal. Appl., 19(4) (2015), 693-712. [CrossRef] [Scopus] [Web of Science]

[9] A. Qayyum, M. Shoaib and I. Faye, A Companion of Ostrowski type integral inequality using a 5-step kernel with some applications, Filomat, 30(13) (2016), 3601-3614. [CrossRef] [Scopus] [Web of Science]

[10] A. Qayyum, M. Shoaib and I. Faye, Companion of Ostrowski-type inequality based on 5-step quadratic kernel and applications, J. Nonlinear Sci. Appl., 9(2) (2016), 537-552. [CrossRef] [Scopus] [Web of Science]

[11] A. Qayyum, M. Shoaib, I. Faye and A.R. Kashif, Refinements of some new efficient quadrature rules, AIP Conf. Proc., 1787, 080003, (2016). [CrossRef] [Scopus] [Web of Science]

[12] H. Budak, M.Z Sarıkaya, and A. Qayyum, New refinements and applications of Ostrowski type inequalities for mappings whose nth derivatives are of bounded variation, TWMS J. Appl. Eng. Math., 11(2) (2021), 424-435. [Scopus] [Web of Science]

[13] A.R. Kashif, T.R. Khan, A. Qayyum and I. Faye, A comparison and error analysis of error bounds, Int. J. Anal. Appl., 16(5) (2018), 751-762 [CrossRef] [Web of Science]

[14] M. Iftikhar, A. Qayyum, S. Fahad and M. Arslan, A new version of Ostrowski type integral inequalities for different differentiable mapping, Open J. Math. Sci., 5 (2021), 353-359. [CrossRef]

[15] M.-u.-D. Junjua, A. Qayyum, A. Munir, H. Budak, M.M. Saleem, S.S. Supadi, A study of some new Hermite-Hadamard inequalities via specific convex functions with applications, Mathematics, 12(3) (2024), 478. [CrossRef] [Scopus] [Web of Science]

[16] R.M.K. Iqbal, A. Qayyum, T.N. Atta, M.M. Baheer and G. Shabbir, Some new results of Ostrowski type inequalities using 4-step quadratic kernel and their applications, Open J. Math. Anal., 7(2) (2023), 8-20. [CrossRef]

[17] Y.H. Qayyum, H. Ali, F. Rasool and A. Qayyum, Construction of new Ostrowski’s type inequalities by using multistep linear kernel, Cumhuriyet Sci. J., 44(3) (2023), 522-530. [CrossRef]

[18] S.S. Dragomir, Some companions of Ostrowski’s inequality for absolutely continuous functions and applications, Bull. Korean Math. Soc., 40(2) (2005), 213-230. [CrossRef]

[19] M.W. Alomari, A companion of Ostrowski’s inequality with applications, Transylv. J. Math. Mech., 3(1) (2011), 9-14. [Web]

[20] M.W. Alomari, A companion of Ostrowski’s inequality for mappings whose first derivatives are bounded and applications numerical integration, Kragujevac J. Math., 36(1) (2012), 77-82. [Scopus] [Web of Science]

[21] M.W. Alomari, M.E. Özdemir and H. Kavurmacı, On companion of Ostrowski inequality for mappings whose first derivatives are absolute value are convex with applications, Miskolc Math. Notes, 13(2) (2012), 233-248. [CrossRef] [Scopus] [Web of Science]

Downloads

Published

30.06.2024

How to Cite

Maaz, M., Muawwaz, M., Ali, U., Faiz, M., Abdulrehman, E., & Qayyum, A. (2024). New Extension in Ostrowski’s Type Inequalities by Using 13-Step Linear Kernel. Advances in Analysis and Applied Mathematics, 1(1), 55–67. https://doi.org/10.62298/advmath.4