New Version of Simpson Type Inequality for Ψ-Hilfer Fractional Integrals

Authors

DOI:

https://doi.org/10.62298/advmath.3

Keywords:

Simpson's Type Inequality, Integral Inequalities, Bounded Functions

Abstract

The ψ-Hilfer fractional integrals serve as a generalization encompassing well-known fractional integrals like Riemann-Liouville and Hadamard fractional integrals. This investigation initiates by demonstrating a key identity tied to ψ-Hilfer fractional integrals, specifically tailored for differentiable functions. Leveraging this identity, we establish a series of Simpson-type inequalities applicable to ψ-Hilfer fractional integrals. To achieve this, we delve into the realms of convexity and the renowned Hölder inequality. Furthermore, we explore the correlations between our primary discoveries and preceding research endeavors.

References

[1] M. Alomari, M. Darus, and S.S. Dragomir, New inequalities of Simpson’s type for s-convex functions with applications, RGMIA Res. Rep. Coll., 12(4) (2009), 1-18. [Web]

[2] M.Z. Sarıkaya, E. Set and M.E. Özdemir, On new inequalities of Simpson’s type for convex functions, Comput. Math. Appl., 60(8) (2010), 2191-2199. [CrossRef] [Scopus] [Web of Science]

[3] T. Du, Y. Li and Z. Yang, A generalization of Simpson’s inequality via differentiable mapping using extended (s, m)-convex functions, Appl. Math. Comput., 293(15) (2017), 358-369. [CrossRef] [Scopus] [Web of Science]

[4] İ. İşcan, Hermite-Hadamard and Simpson-like type inequalities for differentiable harmonically convex functions, J. Math., 2014 (2014), Article ID 346305, 1-10. [CrossRef] [Scopus] [Web of Science]

[5] M.Z. Sarıkaya and S. Bardak, Generalized Simpson type integral inequalities, Konuralp J. Math., 7(1) (2019) 186-191. [DergiPark]

[6] M.Z. Sarıkaya, E. Set and M.E. Özdemir, On new inequalities of Simpson’s type for functions whose second derivatives absolute values are convex, J. Appl. Math. Stat. Inform., 9(1) (2013), 37-45. [CrossRef] [Web of Science]

[7] M.Z. Sarıkaya and N. Aktan, On the generalization of some integral inequalities and their applications, Math. Comput. Model., 54(9-10) (2011), 2175-2182. [CrossRef] [Scopus] [Web of Science]

[8] M.E. Özdemir and Ç. Yıldız, New inequalities for Hermite-Hadamard and Simpson type with applications, Tamkang J. Math., 44(2) (2013), 209-216. [CrossRef] [Web of Science]

[9] M.A. Ali, H. Kara, J. Tariboon, S. Asawasamrit, H. Budak and F. Hezenci, Some new Simpson’s-Formula-Type inequalities for twice–differentiable convex functions via generalized fractional operators, Symmetry, 13(12), (2021), 2249. [CrossRef] [Scopus] [Web of Science]

[10] F. Hezenci, H. Budak and H. Kara, New version of Fractional Simpson type inequalities for twice differentiable functions, Adv. Differ. Equ., 2021(460) (2021), 1-10. [CrossRef] [Scopus] [Web of Science]

[11] X. You, F. Hezenci, H. Budak and H. Kara, New Simpson type inequalities for twice differentiable functions via generalized fractional integrals, AIMS Math., 7(3) (2021), 3959-3971. [CrossRef] [Scopus] [Web of Science]

[12] J. Park, On Simpson-like type integral inequalities for differentiable preinvex functions, Appl. Math. Sci., 7(121) 2013, 6009-6021. [CrossRef] [Scopus]

[13] M. Iqbal, S. Qaisar and S. Hussain, On Simpson’s type inequalities utilizing fractional integrals, J. Comput. Anal. Appl., 23(6) (2017), 1137-1145. [Scopus] [Web of Science]

[14] P. Agarwal, M. Vivas-Cortez, Y. Rangel-Oliveros, and M.A. Ali, New Ostrowski type inequalities for generalized s-convex functions with applications to some special means of real numbers and to midpoint formula, AIMS Math., 7(1), (2022), 1429-1444. [CrossRef] [Scopus] [Web of Science]

[15] M.A. Ali, M. Abbas, H. Budak, P. Agarwal, G. Murtaza and Y.M. Chu, New quantum boundaries for quantum Simpson’s and quantum Newton’s type inequalities for preinvex functions, Adv. Differ. Equ., 2021(64) (2021), 1-21. [CrossRef] [Scopus] [Web of Science]

[16] S.I. Butt, I. Javed, P. Agarwal and J.J. Nieto, Newton–Simpson-type inequalities via majorization, J. Inequal. Appl., 2023(16) (2023), 1-34. [CrossRef] [Scopus] [Web of Science]

[17] J. Chen and X. Huang, Some new inequalities of Simpson’s type for s-convex functions via fractional integrals, Filomat, 31(15 (2017), 4989–4997. [CrossRef] [Scopus] [Web of Science]

[18] İ. Demir, A new approach of Milne-type inequalities based on proportional Caputo-Hybrid operator, J. Adv. Appl. Computat. Math., 10 (2023), 102-119. [CrossRef]

[19] H.D. Desta, H. Budak and H. Kara, New perspectives on fractional Milne-type inequalities: Insights from twice-differentiable functions, Univ. J. Math. Appl., 7(1) (2024), 30-37. [CrossRef] [DergiPark] [Scopus]

[20] S. Kermausuor, Simpson’s type inequalities via the Katugampola fractional integrals for s-convex functions, Kragujevac J. Math., 45(5) (2021), 709-720. [CrossRef] [Scopus] [Web of Science]

[21] B.Z. Liu, An inequality of Simpson type, Proc. R. Soc. A, 461 (2005), 2155-2158. [CrossRef] [Scopus] [Web of Science]

[22] H. Lei, G. Hu, J. Nie and T. Du, Generalized Simpson-type inequalities considering first derivatives through the k-Fractional Integrals, IAENG Int. J. Appl. Math., 50(3) (2020), 1-8. [Scopus]

[23] S. Rashid, A.O. Akdemir, F. Jarad, M.A. Noor and K.I. Noor, Simpson’s type integral inequalities for κ-fractional integrals and their applications, AIMS Math., 4(4) (2019), 1087-1100. [CrossRef] [Scopus] [Web of Science]

[24] M.Z. Sarıkaya H. Budak and S. Erden, On new inequalities of Simpson’s type for generalized convex functions, Korean J. Math., 27(2) (2019), 279-295. [CrossRef] [Web of Science]

[25] A.A. Kilbas, H.M. Srivastava and J.J. Trujillo, Theory and Applications of Fractional Differential Equations, North-Holland Mathematics Studies, 204, Elsevier Sci. B.V., Amsterdam, 2006.

[26] C. Luo and T. Du, Generalized Simpson type inequalities involving Riemann-Liouville fractional integrals and their applications, Filomat, 34(3) (2020), 751-760. [CrossRef] [Scopus] [Web of Science]

[27] S. Miller and B. Ross, An Introduction to the Fractional Calculus and Fractional Differential Equations, NewYork:Wiley, 1993.

[28] R. Gorenflo and F. Mainardi, Fractional Calculus: Integral and Differential Equations of Fractional Order, Springer Verlag, Wien (1997), 223-276. [arXiv]

[29] X. Hai and S.H. Wang Simpson type inequalities for convex function based on the generalized fractional integrals, Turkish J. Inequal., 5(1) (2021), 1-15. [Web]

Downloads

Published

30.06.2024

How to Cite

Budak, H. (2024). New Version of Simpson Type Inequality for Ψ-Hilfer Fractional Integrals. Advances in Analysis and Applied Mathematics, 1(1), 1–11. https://doi.org/10.62298/advmath.3