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Abstract

This paper aims to establish a new hybrid class of special polynomials, namely, the generalized Bell-
Appell polynomials. The idea of the monomiality principle is used to construct the generating function
for the generalized Bell-Appell polynomials. Certain related identities and properties are also considered.
The determinant representation is also derived. Further, we present some special cases of generalized
Bell-Appell family and investigate the corresponding results.
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1. Introduction

Special polynomials have significant roles in many branches of mathematics, theoretical physics, and
engineering [1, 2, 3]. We realize that various problems in engineering and physics are framed in terms
of differential equations, and most of these equations can be investigated by using several families of
special polynomials. Further, these special polynomials allow the derivation of various helpful identities
in a fairly straight forward way and useful in introducing new classes of special polynomials. The Bell
polynomials are of the most important special polynomials due to their various applications in different
mathematical frameworks (see [1, 3, 4]). The Appell polynomials arise in various applications in pure
and applied mathematics. These interesting polynomials appear in chemistry, theoretical physics and
many other branches of mathematics such as the study of polynomial expansions of analytic functions,
numerical analysis, and number theory (see [5, 6, 7]). Throughout this study, the following notations and
definitions are used: N = {1, 2, 3, ...} and N0 = N ∪ {0}.

The 2-variable Bell polynomials (2VBelP) Belε(υ1, υ2) [8, 9] are defined by

exp (υ1ω + υ2(eω − 1)) =
∞∑
ε=0

Belε(υ1, υ2)
ωε

ε!
. (1)

Taking υ1 = 0 in generating function (1), we get
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exp (υ2(eω − 1)) =
∞∑
ε=0

Belε(υ2)
ωε

ε!
, (2)

where Belε(υ2) denotes the classical Bell polynomials [2, 10, 11].
The generalized Bell polynomials (GBP) GBelε(υ1, υ2, z) [12] are defined by

exp (υ1ω)ψ(υ2, ω) exp (z(eω − 1)) =
∞∑
ε=0

GBelε(υ1, υ2, z)
ωε

ε!
. (3)

Setting υ1 = 0 in generating relation (3), we get

ψ(υ2, ω) ez(e
ω−1) =

∞∑
ε=0

GBelε(υ2, z)
ωε

ε!
, (4)

where GBelε(υ2, z) are called 2-variable generalized Bell polynomials.
The generalized Bell polynomials GBelε(υ1, υ2, z) satisfy the following series representations:

GBelε(υ1, υ2, z) =
ε∑

κ=0

(
ε

κ

)
Gε−κ(υ1, υ2) Belκ(z); (5)

GBelε(υ1, υ2, z) =
ε∑

κ=0

(
ε

κ

)
Belε−κ(υ1, z) ψκ(υ2); (6)

GBelε(υ1, υ2, z) =
ε∑

κ=0

(
ε

κ

)
GBelκ(υ2, z) υ

ε−κ
1 . (7)

The generalized Bell family contains many important polynomials. We present the list of some known
generalized Bell family in Table 1.

S.No. ψ(υ2, ω) Polynomial Generating Function
I. exp (υ2ω

r) Gould-Hopper-Bell polynomials [12] exp (υ1t+ υ2ω
r + z(eω − 1))

=
∑∞
ε=0 H(r)Belε(υ1, υ2, z)ω

ε

ε!

II. C0(υ2ω) Laguerre-Bell C0(υ2ω) exp (υ1ω + z(eω − 1))

polynomials [12] =
∑∞
ε=0 LBelε(υ1, υ2, z)ω

ε

ε!

III. 1
1−υ2ωs

truncated-exponential-Bell 1
1−υ2ωs

exp (υ1ω + z(eω − 1))

polynomials of order s [12] =
∑∞
ε=0 e(s)Belε(υ1, υ2, z)

ωε

ε!

IV. 1
1−υ2(eω−1) Fubini-Bell exp (υ1ω)

1−υ2(eω−1) exp (z(eω − 1))

polynomials [12] =
∑∞
ε=0 FBelε(υ1, υ2, z)

ωε

ε!
Table 1. Certain members belonging to the generalized Bell polynomials GBelε(υ1, υ2, z).

The generalized Bell polynomials GBelε(υ1, υ2, z) are quasi-monomial with respect to the following
multiplicative and derivative operators [12]:

M̂GBel = υ1 +
ψ
′
(υ2, Dυ1)

ψ(υ2, Dυ1)
+ zeDυ1 (8)

and
P̂GBel = Dυ1 , (9)

respectively.
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According to the monomiality principle, the GBP GBelε(υ1, υ2, z) satisfy the following identities:

M̂GBel{GBelε(υ1, υ2, z)} = GBelε+1(υ1, υ2, z), (10)

P̂GBel{GBelε(υ1, υ2, z)} = ε GBelε−1(υ1, υ2, z), (11)

M̂GBelP̂GBel{GBelε(υ1, υ2, z)} = ε GBelε(υ1, υ2, z), (12)

exp(M̂GBelω){1} =
∞∑
ε=0

GBelε(υ1, υ2, z)
ωε

ε!
(|ω| <∞). (13)

The sequences of Appell polynomial (AP) surface in various applicable problems in Applied and pure
mathematics such as the investigation and study of analytic problems, polynomial expansions in physics
and chemistry[5, 6, 7].

The Appell polynomial sets [13] might be characterized by either of the equivalent conditions [14, p.398]:
{Aε(υ1)}(ε = 0, 1, 2, 3, ...), is an Appell set (Aε(υ1) of degree exactly ε) if either

(a)
d

dυ1
Aε(υ1) = ε Aε−1(υ1), ε = 0, 1, 2, 3, ..., or

(b) there exists formal series

A(ω) =
∞∑
ε=0

Aε
ωε

ε!
, A0 6= 0, (14)

such that (again formally)

A(ω) exp (υ1ω) =
∞∑
ε=0

Aε(υ1)
ωε

ε!
. (15)

Özat et al [15] defined Bell based Appell polynomials as

A(ω) exp (υ1ω + υ2(eω − 1)) =
∞∑
ε=0

BelAε(υ1, υ2)
ωε

ε!
. (16)

Over the last few years, there has been increasing interest in a new approach related to special functi-
ons, that is, determinant approach. Costabile et al. [16] have established a new definition of Bernoulli
polynomials based on a determinant approach. Further, Longo an Costabile have established determinant
approaches to Sheffer and Appell polynomials (see [17, 18]). This stimulated the authors to shed light on
the determinant approach of some new hybrid polynomials.

Recently, numerous researchers have utilized the operational methods together with the monomiality
principle [19] to establish and investigate new mixed families of special polynomials [20, 21, 22, 23, 24, 25,
26, 27, 28].

In this work, by combining the generalized Bell polynomials and Appell polynomials, we present new
family of hybrid special polynomials, namely the generalized Bell-Appell polynomials, that is in Definition
1. Next, the series representations and certain other important formulas for the generalized Bell-Appell
polynomials are derived. In Section 3, we establish the determinant representation including these poly-
nomials. Finally, certain special cases of the generalized Bell-Appell polynomials are discussed and the
repleted results is obtained.

2. Generalized Bell-Appell Polynomials

Here, we introduce a new interesting class of hybrid special polynomials, called the generalized Bell-Appell
polynomials by means of the generating functions.
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In generating function (15), replacing υ1 by the multiplicative operator M̂GBel (8) of the GBP

GBelε(υ1, υ2, z), gives

A(ω) exp(M̂GBel ω) =
∞∑
ε=0

Aε(M̂GBel)
ωε

ε!
. (17)

Using equation (13) in the above equation and denoting Aε(M̂GBel) by the resultant generalized Bell-
Appell polynomials (GBAP) GBelAε(υ1, υ2, z), gives

A(ω)

( ∞∑
ε=0

GBelε(υ1, υ2, z)
ωε

ε!

)
=
∞∑
ε=0

GBelAε(υ1, υ2, z)
ωε

ε!
. (18)

Now, utilizing equation (3) in the above equation, we arrive at the following definition.

Definition 1. The generalized Bell-Appell polynomials GBelAε(υ1, υ2, z) are defined by the generating
function:

A(ω) ψ(υ2, ω) exp(υ1ω + z(eω − 1)) =
∞∑
ε=0

GBelAε(υ1, υ2, z)
ωε

ε!
. (19)

Remark 1. Setting υ1 = 0 in generating relation (19), we get two-variable generalized Bell-Appell
polynomials GBelAε(υ2, z) which are given as:

A(ω) ψ(υ2, ω) exp(z(eω − 1)) =
∞∑
ε=0

GBelAε(υ2, z)
ωε

ε!
. (20)

Remark 2. Setting z = 0 in generating relation (19), we get the 2-variable general-Appell polynomials

GAε(υ1, υ2) [29] given by generating function

A(ω) ψ(υ2, ω) exp(υ1ω) =
∞∑
ε=0

GAε(υ1, υ2)
ωε

ε!
. (21)

Next, by using generating function (19), we establish some novel identities and relations including the
generalized Bell-Appell polynomials.

Theorem 1. The generalized Bell-Appell polynomials GBelAε(υ1, υ2, z) satisfy the following series
representations:

GBelAε(υ1, υ2, z) =
ε∑

κ=0

(
ε

κ

)
Aε−κ(υ1) GBelκ(υ2, z); (22)

GBelAε(υ1, υ2, z) =
ε∑

κ=0

(
ε

κ

)
GAε−κ(υ1, υ2) Belκ(z); (23)

GBelAε(υ1, υ2, z) =
ε∑

κ=0

(
ε

κ

)
GBelAκ(υ2, z) υ

ε−κ
1 ; (24)

GBelAε(υ1, υ2, z) =
ε∑

κ=0

(
ε

κ

)
Gε−κ(υ1, υ2) BelAκ(z). (25)

Proof. In view of generating relations (4) and (15) and Cauchy product rule, generating relation (19) gives

∞∑
ε=0

GBelAε(υ1, υ2, z)
ωε

ε!
=
∞∑
ε=0

ε∑
κ=0

(
ε

κ

)
Aε−κ(υ1) GBelκ(υ2, z)

ωε

ε!
, (26)

which, upon equating the coefficients of the analogous powers of ω, yields the assertion in equation (22).
Similarly, the assertions in equations (23), (24) and (25) can be proved. �
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Theorem 2. For ε ∈ N0, we have

GBelAε(υ1, υ2, z) =
1

2

ε∑
κ=0

(
ε

κ

)
Eκ
(
GBelAε−κ(υ1 + 1, υ2, z) + GBelAε−κ(υ1, υ2, z)

)
. (27)

Proof. According generating relation (19), we can write

∞∑
ε=0

GBelAε(υ1 + 1, υ2, z)
ωε

ε!
+
∞∑
ε=0

GBelAε(υ1, υ2, z)
ωε

ε!
= (eω + 1)

∞∑
ε=0

GBelAε(υ1, υ2, z)
ωε

ε!
, (28)

which can be written as

∞∑
ε=0

GBelAε(υ1, υ2, z)
ωε

ε!
=

1

2

( ∞∑
ε=0

Eε
ωε

ε!

)( ∞∑
ε=0

GBelAε(υ1 + 1, υ2, z)
ωε

ε!
+
∞∑
ε=0

GBelAε(υ1, υ2, z)
ωε

ε!

)
,

(29)
where Eε denotes the Euler numbers [30]. Finally, using Cauchy product rule and comparing the like
powers of ω in the resultant equation, we get (27). �

3. Determinant Representation

Theorem 3. The generalized Bell-Appell polynomials GBelAε(υ1, υ2, z) of degree ε are defined by

GBelA0(x, y, z) =
1

β0
, β0 =

1

A0
, (30)

GBelAε(υ1, υ2, z)

=
(−1)ε

(β0)ε+1

∣∣∣∣∣∣∣∣∣∣∣

1 GBel1(υ1, υ2, z) GBel2(υ1, υ2, z) ... GBelε−1(υ1, υ2, z) GBelε(υ1, υ2, z)
β0 β1 β2 ... βε−1 βε
0 β0 ( 2

1 )β1 ... ( ε−1
1 )βε−2 ( n1 )βε−1

0 0 β0 ... ( ε−1
2 )βε−3 ( ε2 )βε−2

. . . ... . .
0 0 0 ... β0 ( ε

ε−1 )β1

∣∣∣∣∣∣∣∣∣∣∣
, (31)

βε = − 1

A0

( ε∑
k=1

( εk )Akβε−k

)
, ε = 1, 2, ...,

where β0, β1, ..., βε ∈ R, β0 6= 0 and GBelε(υ1, υ2, z)(ε = 0, 1, 2, ..., ) are the generalized Bell polynomials
defined by equation (3).

Proof. We start with the determinant definition of the AP Aε(υ1) of degree ε which is given as [17]:

A0(υ1) =
1

β0
, β0 =

1

A0
, (32)

Aε(υ1) =
(−1)ε

(β0)ε+1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 υ1 υ21 ... υε−1
1 υε1

β0 β1 β2 ... βε−1 βε

0 β0 ( 2
1 )β1 ... ( ε−1

1 )βε−2 ( ε1 )βε−1

0 0 β0 ... ( ε−1
2 )βε−3 ( ε2 )βε−2

. . . ... . .

. . . ... . .
0 0 0 ... β0 ( ε

ε−1 )β1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, βε = − 1

A0

( ε∑
k=1

( εk )Akβε−k
)
,
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ε = 1, 2, 3, ..., (33)

where β0, β1, ..., βε ∈ R, β0 6= 0.
Setting ε = 0 in series definition (22) and then using equation (32) in the resultant equation, we obtain

assertion (30).
In order to prove assertion (31), the determinant of the Appell polynomials given in equation (33) is

expanded with respect to the first row, so that

Aε(υ1) =
(−1)ε

(β0)ε+1

∣∣∣∣∣∣∣∣∣
β1 β2 ... βε−1 βε
β0 ( 2

1 )β1 ... ( ε−1
1 )βε−2 ( ε1 )βn−1

0 β0 ... ( ε−1
2 )βε−3 ( ε2 )βε−2

. . ... . .
0 0 ... β0 ( ε

ε−1 )β1

∣∣∣∣∣∣∣∣∣

− (−1)ευ1
(β0)ε+1

∣∣∣∣∣∣∣∣∣
β0 β2 ... βε−1 βε
0 ( 2

1 )β1 ... ( ε−1
1 )βε−2 ( ε1 )βε−1

0 β0 ... ( ε−1
2 )βε−3 ( ε2 )βε−2

. . ... . .
0 0 ... β0 ( ε

ε−1 )β1

∣∣∣∣∣∣∣∣∣+
(−1)ευ21
(β0)ε+1

∣∣∣∣∣∣∣∣∣
β0 β1 ... βε−1 βε
0 β0 ... ( ε−1

1 )βε−2 ( ε1 )βε−1

0 0 ... ( ε−1
2 )βε−3 ( ε2 )βε−2

. . ... . .
0 0 ... β0 ( ε

ε−1 )β1

∣∣∣∣∣∣∣∣∣

+...+
(−1)2ε+1υε−1

1

(β0)ε+1

∣∣∣∣∣∣∣∣∣
β0 β1 β2 ... βε
0 β0 ( 2

1 )β1 ... ( ε1 )βε−1

0 0 β0 ... ( ε2 )βε−2

. . . ... .
0 0 0 ... ( ε

ε−1 )β1

∣∣∣∣∣∣∣∣∣+
υε1

(β0)ε+1

∣∣∣∣∣∣∣∣∣
β0 β1 β2 ... βε−1

0 β0 ( 2
1 )β1 ... ( ε−1

1 )βε−2

0 0 β0 ... ( ε−1
2 )βε−3

. . . ... .
0 0 0 ... β0

∣∣∣∣∣∣∣∣∣.
(34)

Since each minor in equation (34) is independent of υ1, therefore replacing υ1 by the multiplicative

operator M̂GBel (8) in equation (34) and then using the monomiality principle equation GBelε(υ1, υ2, z) =

M̂ε
GBel{1}(ε = 1, 2, ...), in the r.h.s. of the resultant equation, we find

Aε(M̂GBel) =
(−1)ε

(β0)ε+1

∣∣∣∣∣∣∣∣∣
β1 β2 ... βε−1 βε
β0 ( 2

1 )β1 ... ( ε−1
1 )βε−2 ( ε1 )βε−1

0 β0 ... ( ε−1
2 )βε−3 ( ε2 )βε−2

. . ... . .
0 0 ... β0 ( ε

ε−1 )β1

∣∣∣∣∣∣∣∣∣−
(−1)εGBel1(υ1, υ2, z)

(β0)ε+1

×

∣∣∣∣∣∣∣∣∣
β0 β2 ... βε−1 βε
0 ( 2

1 )β1 ... ( ε−1
1 )βε−2 ( ε1 )βε−1

0 β0 ... ( n−1
2 )βε−3 ( n2 )βε−2

. . ... . .
0 0 ... β0 ( ε

ε−1 )β1

∣∣∣∣∣∣∣∣∣+
(−1)εGBel2(υ1, υ2, z)

(β0)ε+1

∣∣∣∣∣∣∣∣∣
β0 β1 ... βε−1 βε
0 β0 ... ( ε−1

1 )βε−2 ( ε1 )βε−1

0 0 ... ( ε−1
2 )βε−3 ( ε2 )βε−2

. . ... . .
0 0 ... β0 ( ε

ε−1 )β1

∣∣∣∣∣∣∣∣∣
+...+

(−1)2ε+1
GBelε−1(υ1, υ2, z)

(β0)ε+1
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×

∣∣∣∣∣∣∣∣∣
β0 β1 β2 ... βε
0 β0 ( 2

1 )β1 ... ( ε1 )βε−1

0 0 β0 ... ( ε2 )βε−2

. . . ... .
0 0 0 ... ( ε

ε−1 )β1

∣∣∣∣∣∣∣∣∣+
GBelε(υ1, υ2, z)

(β0)ε+1

∣∣∣∣∣∣∣∣∣
β0 β1 β2 ... βε−1

0 β0 ( 2
1 )β1 ... ( ε−1

1 )βε−2

0 0 β0 ... ( ε−1
2 )βε−3

. . . ... .
0 0 0 ... β0

∣∣∣∣∣∣∣∣∣. (35)

Now, using the fact that Aε(M̂GBel) = GBelAε(υ1, υ2, z) in the l.h.s. and combining the terms in the
r.h.s. of equation (35), we get assertion (31). �

In the next section, certain special cases of the generalized Bell-Appell polynomials GBelAε(υ1, υ2, z)
are considered.

4. Special Cases

Here, we present new special hybrid members of the generalized Bell-Appell family GBelAε(υ1, υ2, z). The
obtained results in the previous sections are used to investigate the results that related to these new special
hybrid members.

I. Taking A(ω) = ω
eω−1 in generating function (19), gives

ω

eω − 1
ψ(υ2, ω) exp(υ1ω + z(eω − 1)) =

∞∑
ε=0

GBelBε(υ1, υ2, z)
ωε

ε!
, (36)

where GBelBε(υ1, υ2, z) is called the generalized Bell-Bernoulli polynomials (GBBP).
The GBBP GBelBε(υ1, υ2, z) satisfy the following representations:

GBelBε(υ1, υ2, z) =
ε∑

κ=0

(
ε

κ

)
Bε−κ(υ1) GBelκ(υ2, z); (37)

GBelBε(υ1, υ2, z) =
ε∑

κ=0

(
ε

κ

)
GBε−κ(υ1, υ2) Belκ(z); (38)

GBelBε(υ1, υ2, z) =
ε∑

κ=0

(
ε

κ

)
GBelBκ(υ2, z) υ

ε−κ
1 ; (39)

GBelBε(υ1, υ2, z) =
ε∑

κ=0

(
ε

κ

)
Gε−κ(υ1, υ2) BelBκ(z); (40)

GBelBε(υ1, υ2, z) =
1

2

ε∑
κ=0

(
ε

κ

)
Eκ
(
GBelBε−κ(υ1 + 1, υ2, z) + GBelBε−κ(υ1, υ2, z)

)
. (41)

It has been shown in [17] that for β0 = 1 and βj = 1
j+1 , (j = 1, 2, 3, ..., ε) the determinant definition

of Appell polynomials Aε(υ1) defined by equations (32) and (33) reduces to determinant definition of
Bernoulli polynomials Bε(υ1) [16]. Therefore, taking β0 = 1 and βj = 1

j+1 , (j = 1, 2, 3, ..., ε) in equations

(30) and (31), gives the following determinant form of the GBBP GBelBε(υ1, υ2, z):

Corollary 1. The generalized Bell-Bernoulli polynomials GBelBε(υ1, υ2, z) of degree ε are defined by

GBelB0(υ1, υ2, z) = 1, (42)
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GBelBε(υ1, υ2, z) = (−1)ε

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 GBel1(υ1, υ2, z) GBel2(υ1, υ2, z) ... GBelε−1(υ1, υ2, z) GBelε(υ1, υ2, z)

1 1
2

1
3 ... 1

ε
1
ε+1

0 1 ( 2
1 ) 1

2 ... ( ε−1
1 ) 1

ε−1 ( ε1 ) 1
ε

0 0 1 ... ( ε−1
2 ) 1

ε−2 ( ε2 ) 1
ε−1

. . . ... . .

. . . ... . .
0 0 0 ... 1 ( ε

ε−1 ) 1
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (43)

ε = 1, 2, 3, ..., where GBelε(υ1, υ2, z)(ε = 0, 1, 2, ..., ) are the generalized Bell polynomials of degree ε.

II. Taking A(ω) = 2
eω+1 in generating function (19), gives

2

eω + 1
ψ(υ2, ω) exp(υ1ω + z(eω − 1)) =

∞∑
ε=0

GBelEε(υ1, υ2, z)
ωε

ε!
, (44)

where GBelEε(υ1, υ2, z) is called the generalized Bell-Euler polynomials (GBEP).
The GBEP GBelEε(υ1, υ2, z) satisfy the following representations:

GBelEε(υ1, υ2, z) =
ε∑

κ=0

(
ε

κ

)
Eε−κ(υ1) GBelκ(υ2, z); (45)

GBelEε(υ1, υ2, z) =
ε∑

κ=0

(
ε

κ

)
GEε−κ(υ1, υ2) Belκ(z); (46)

GBelEε(υ1, υ2, z) =
ε∑

κ=0

(
ε

κ

)
GBelEκ(υ2, z) υ

ε−κ
1 ; (47)

GBelEε(υ1, υ2, z) =
ε∑

κ=0

(
ε

κ

)
Gε−κ(υ1, υ2) BelEκ(z); (48)

GBelEε(υ1, υ2, z) =
1

2

ε∑
κ=0

(
ε

κ

)
Eκ
(
GBelEε−κ(υ1 + 1, υ2, z) + GBelEε−κ(υ1, υ2, z)

)
. (49)

Further, according to the fact that for β0 = 1 and βj = 1
2 , (j = 1, 2, 3, ..., ε), equations (32) and (33) gives

to the determinant form of Euler polynomials Eε(υ1) [17], so by taking β0 = 1 and βj = 1
2 , (j = 1, 2, 3, ..., ε)

in equations (30) and (31), gives the following determinant form of the GBEP GBelEε(υ1, υ2, z):

Corollary 2. The generalized Bell-Euler polynomials GBelEε(υ1, υ2, z) of degree ε are defined by

GBelE0(υ1, υ2, z) = 1, (50)

GBelEε(υ1, υ2, z) = (−1)ε

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 GBel1(υ1, υ2, z) GBel2(υ1, υ2, z) ... GBelε−1(υ1, υ2, z) GBelε(υ1, υ2, z)

1 1
2

1
2 ... 1

2
1
2

0 1 ( 2
1 ) 1

2 ... ( ε−1
1 ) 1

2 ( ε1 ) 1
2

0 0 1 ... ( ε−1
2 ) 1

2 ( ε2 ) 1
2

. . . ... . .

. . . ... . .
0 0 0 ... 1 ( ε

ε−1 ) 1
2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

, (51)

ε = 1, 2, 3, ..., where GBelε(υ1, υ2, z)(ε = 0, 1, 2, ..., ) are the generalized Bell polynomials of degree ε.
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Some other special cases of the generalized Bell-Appell polynomials can be listed below.
III. Taking ψ(υ2, ω) = eυ2ω

r

in generating function (19), gives

A(ω) exp(υ1ω + υ2ω
r + z(eω − 1)) =

∞∑
ε=0

H(r)BelAε(υ1, υ2, z)
ωε

ε!
, (52)

where H(r)BelAε(υ1, υ2, z) is called the Gould-Hopper-Bell-Appell polynomials.
IV. Taking ψ(υ2, ω) = C0(υ2ω) in generating function (19), gives

A(ω) C0(υ2ω) exp(υ1ω + z(eω − 1)) =
∞∑
ε=0

LBelAε(υ1, υ2, z)
ωε

ε!
, (53)

where LBelAε(υ1, υ2, z) is called the Laguerre-Bell-Appell polynomials.
V.Taking ψ(υ2, ω) = 1

1−υ2ωs
in generating function (19), gives

A(ω)

1− υ2ωs
exp(υ1ω + z(eω − 1)) =

∞∑
ε=0

e(s)BelAε(υ1, υ2, z)
ωε

ε!
, (54)

where e(s)BelAε(υ1, υ2, z) is called the truncated-exponential-Bell-Appell polynomials of order s.
VI. Taking ψ(υ2, ω) = 1

1−υ2(eω−1) in generating function (19), gives

A(ω)

1− υ2(eω − 1)
exp(υ1ω + z(eω − 1)) =

∞∑
ε=0

FBelAε(υ1, υ2, z)
ωε

ε!
, (55)

whereFBelAε(υ1, υ2, z) is called the Fubini-Bell-Appell polynomials.
Similarly, by taking different values A(ω) in (52)-(55), we can obtain more other special cases of the

generalized Bell-Appell polynomials GBelAε(υ1, υ2, z).

5. Conclusions

The hybrid form of special polynomials and numbers has gained worthy considerations by numerous
researchers. In this work, we introduced a new class of hybrid special polynomials, namely, the generalized
Bell-Appell polynomials. The generating function for the generalized Bell-Appell polynomials and certain
related identities and properties are also investigated. The determinant representation is also derived.
Further, certain special cases of the generalized Bell-Appell family are also considered. The differential
and integral representations containing these types of special polynomials and related applications can be
investigated in further studies.
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2023.05.04.1401. The author would like to express his sincere thanks to the editor and the anonymous
reviewers for their helpful comments and suggestions

Author’s Contribution: The author, A.M., contributed to this manuscript fully in theoretic and stru-
ctural points.

Conflict of Interest Disclosure: The author declares no conflict of interest.

Copyright Statement: Author owns the copyright of their work published in the journal and their work
is published under the CC BY-NC 4.0 license.

Supporting/Supporting Organizations: This research received no external funding.

Ethical Approval and Participant Consent: This article does not contain any studies with human
or animal subjects. It is declared that during the preparation process of this study, scientific and ethical



A Note on Generalized Bell-Appell Polynomials 99

principles were followed and all the studies benefited from are stated in the bibliography.

Plagiarism Statement: This article was scanned by the plagiarism program. No plagiarism detected.

Availability of Data and Materials: Data sharing not applicable.

Use of AI tools: The author declares that they have not used Artificial Intelligence (AI) tools in the
creation of this article.

ORCID

Abdulghani Muhyi https://orcid.org/0000-0002-7979-8064

References

[1] S. Benbernou, S. Gala and M.A. Ragusa, On the regularity criteria for the 3D magnetohydrodynamic
equations via two components in terms of BMO space, Math. Methods Appl. Sci., 37(15) (2014),
2320–2325. [CrossRef] [Scopus] [Web of Science]

[2] E.T. Bell, Exponential polynomials, Ann. Math., 35 (1934), 258–277. [CrossRef]

[3] R.B. Boas and R.C. Buck, Polynomial Expansions of Analytic Functions, Springer, Berlin, (2013).
[CrossRef]

[4] J. Sándor and B. Crstici, Handbook of Number Theory, Handbook of Number Theory, vol. II. Kluwer
Academic Publishers, Dordrecht, 2004. [CrossRef]

[5] F. Avram and M.S. Taqqu, Noncentral limit theorems and Appell polynomials, Ann. Probab., 15(2)
(1987), 767–775. [CrossRef] [Web of Science]

[6] D. Levi, P. Tempesta and P. Winternitz, Umbral calculus, difference equations and the Schrödinger
equation, J. Math. Phys., 45(11) (2004), 4077–4105. [CrossRef] [Scopus] [Web of Science]

[7] P. Tempesta, Formal groups, Bernoulli-type polynomials and L-series, C. R. Acad. Sci. Paris, Ser.,
345(6) (2007),303–306. [CrossRef] [Scopus] [Web of Science]
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