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Abstract

In this paper, we analyze a certain algebraic structure H [−1, 1] containing all t-scaled hypercomplex
numbers of Ht where the scales t are from −1 to 1, i.e., −1 ≤ t ≤ 1 in R. The algebraic, operator-theoretic,
and operator-algebraic properties of H [−1, 1] are studied under the local dynamics on the closed interval
[−1, 1] inherited from the dynamics on the continuum R. Also, some analytic properties of an interesting
type of operators switching scales of hypercomplex numbers acting on H [−1, 1] are considered, and we
investigate how they affect the analysis on H [−1, 1].
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1. Introduction

Hypercomplex numbers are understood to be the pairs (a, b) ∈ C2 the complex field C, contained in a ring,

Ht =
(
C2, +, ·t

)
,

for an arbitrarily fixed scale t in the real field R, where (+) is the usual vector-addition on C2, and (·t) is
the t-scaled vector-multiplication on C2,

(a1, b1) ·t (a2, b2) =
(
a1a2 + tb1b2, a1b2 + b1a2

)
,

where w are the conjugates of w in C. By a representation
(
C2, πt

)
of the ring Ht, one can understand

each hypercomplex number h = (a, b) ∈ Ht as a (2×2)-matrix,

πt (h)
def
=

(
a tb

b a

)
in M2 (C) ,

canonically, where M2 (C) is the (2× 2)-matrix algebra acting on C2, for all t ∈ R (e.g., see [1]). Under our
construction, the ring H−1 is the noncommutative field H of all quaternions (e.g., [2] and [3]), and the ring
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20 I. Cho

H1 is the ring of all split-quaternion numbers (e.g., [4], [5]). The algebraic, analytic and operator-theoretic
properties on Ht, and some free-probabilistic models of Ht are studied in [1].

In this paper, the family {Ht}t∈R is considered in a single algebraic structure H = ⊕a
t∈R

Ht dictated by

the dynamics of the time-flow R = (R,+), where ⊕a is the pure-algebraic direct product of algebras over
the real field R (in short, R-algebras). We in particular restrict our interests to the sub-family,

{Ht : −1 ≤ t ≤ 1} ,

and the subalgebra,
H [−1, 1] = ⊕a

t∈[−1,1]
Ht of H ,

where [−1, 1] = {s ∈ R : −1 ≤ s ≤ 1} is the closed interval in R. Depending on −1 ≤ t ≤ 1, this operator-
algebraic structure H [−1, 1] is regarded as a system starting from the quaternions H−1, ending at the
split-quaternions H1, or vice versa. The reason why we restrict R to the closed interval [−1, 1] (or, restrict
H to H [−1, 1]) is because of certain asymptotic analytic data on Ht, especially, where t → ∞, and
t→ −∞.

The quaternions H = H−1 has been studied not only in pure-mathematical areas (e.g., [3], [6], [7], [8],
[9], [10], [11], [12], [13], [14], [15]), but also in applied mathematics (e.g., [16], [17], [18], [19] and [20]).
Independently, the spectral analysis on H are considered in [1] and [2], under representation, different from
the usual quaternion-eigenvalue problems of quaternion-matrices studied in [11], [17] and [18].

In this paper, certain asymptotic analytic data on ∪
t∈R

Ht are studied where either t→∞, or t→ −∞ in

R. Those asymptotic data demonstrate that, if t→ ±∞, then analysis on the R-algebra Ht seems vague, or
undetermined. These motivate us to consider H [−1, 1], from the quaternions H−1 to the split-quaternions
H1. Certain analytic-data-preserving conditions on H [−1, 1] are characterized.

2. The Scaled Hypercomplex Systems {Ht}t∈R
In this section, we review some main results of [1] for our works.

2.1. Scaled Hypercomplex Rings {Ht}t∈R

For t ∈ R, define the t-scaled vector-multiplication (·t) on C2 by

(a1, b1) ·t (a2, b2)
def
=
(
a1a2 + tb1b2, a1b2 + b1a2

)
, (1)

for (a1, b1) , (a2, b2) ∈ C2. Then the triple
(
C2,+, ·t

)
forms a unital ring with its unity (1, 0), where (+) is

the vector-addition on C2, and (·t) is in the sense of (1). See [1] for details.

Definition 1. For t ∈ R, we call Ht
denote

=
(
C2,+, ·t

)
, the t-scaled hypercomplex ring.

For any t ∈ R, define an injection,
πt : Ht →M2 (C) , (2)

by

πt ((a, b)) =

(
a tb

b a

)
, ∀ (a, b) ∈ Ht,

where Mk (C) is the matrix algebra of all (k × k)-matrices over C for all k ∈ N. This map πt of (2) satisfies
that

πt (h1 + h2) = πt (h1) + πt (h2) , (3)

and
πt (h1 ·t h2) = πt (h1)πt (h2) , (4)

in M2 (C), where πt (h1)πt (h2) is the matrix multiplication of πt (h1) and πt (h2) in M2 (C) (e.g., see [1]
for details). By (3)-(4), the pair

(
C2, πt

)
forms a representation of Ht. Thus, the realization,
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πt (Ht) =

{(
a tb

b a

)
∈M2 (C) : (a, b) ∈ Ht

}
, (5)

of Ht is well-defined in M2 (C).

Definition 2. The realization Ht2
denote

= πt (Ht) of (5) is called the t-scaled realization of Ht (in M2 (C)),
for a scale t ∈ R. We denote each element πt (h) by [h]t in Ht2, for each h ∈ Ht.

Remark that the subset,

H×t
denote

= Ht \ {(0, 0)} ,

where (0, 0) ∈ Ht is the (+)-identity of Ht, forms the maximal monoid,

H×t
denote

=
(
H×t , ·t

)
,

with its identity (1, 0), in Ht. We call H×t , the t-scaled hypercomplex monoid.

2.2. On the t-Scaled Realization Ht
2 of Ht

For any (a, b) ∈ Ht realized to be [(a, b)]t ∈ H
t
2,

det
(
[(a, b)]t

)
= det

(
a tb

b a

)
= |a|2 − t |b|2 .

where det : M2 (C) → C is the determinant, and |.| is the modulus on C. Then |a|2 6= t |b|2 in C, if and
only if [(a, b)]t is invertible “in Ht2.” In particular,

(a, b)−1 =

(
a

|a|2 − t |b|2
,

−b
|a|2 − t |b|2

)
in Ht, (6)

satisfying [
(a, b)−1

]
t

= [(a, b)]−1
t in Ht

2.

See [1] for details. The invertibility (6) is meaningful not only in M2 (C), but also “in Ht2,” and hence, “in
Ht,” as in (6).

Recall that an algebraic structure (X,+, ·) is said to be a noncommutative field (or, a skew field), if it
is a unital ring, and (X \ {0X} , ·) forms a non-abelian group, where 0X is the (+)-identity of (X,+, ·).
(e.g., [1] and [2]).

Proposition 1. If t < 0 in R, then every element (a, b) of the t-scaled hypercomplex monoid H×t are
invertible in Ht. The converse also holds, too. i.e.,

t < 0 in R⇐⇒ Ht is a noncommutative field. (7)

Proof. See [1, 2] for details. �
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More general to (7), for any scale t ∈ R, the t-scaled hypercomplex ring Ht is partitioned by

Ht = Hinvt tHsingt (8)

with
Hinvt =

{
(a, b) : |a|2 6= t |b|2

}
,

and
Hsingt =

{
(a, b) : |a|2 = t |b|2

}
,

where t is the disjoint union, and hence, the t-scaled hypercomplex monoid H×t is partitioned by

H×t = Hinvt tH×singt , (9)

with
H×singt = Hsingt \ {(0, 0)} ,

by (9). By (7) and (8), the block Hinvt of (9) is a non-abelian group embedded in H×t . Meanwhile, the

other block H×singt of (9) is a semigroup in H×t without identity in H×t (e.g., see [1, 2]).

Definition 3. Let H×t be the t-scaled hypercomplex monoid with its partition (9). The block Hinvt is

called the group-part of H×t (or, of Ht), and the other block H×singt is called the semigroup-part of H×t
(or, of Ht).

By (7), if t < 0, then Ht = H×t ∪ {(0, 0)}, i.e.,

t < 0 =⇒
[
H×singt is empty in H×t ⇐⇒ Ht = Hinvt ∪ {(0, 0)}

]
, (10)

meanwhile, if t ≥ 0, then H×singt is a non-empty properly semigroup of H×t .

2.3. Spectra of t-Scaled Hypercomplex Numbers

We now review the spectral analysis on Ht investigated in [1]. Let (a, b) ∈ Ht with its realization,

πt (a, b) = [(a, b)]t =

(
a tb

b a

)
∈ Ht2.

Then, in a variable z on C,

det
(
[(a, b)]t − z [(1, 0)]t

)
= z2 − 2Re (a) z + det

(
[a, b]t

)
, (11)

where Re (a) is the real part of a in C. This polynomial (11) has its zeroes,

z = Re (a)±
√

Re (a)2 − det
(
[(a, b)]t

)
(12)

(e.g., see [1] for details).

Proposition 2. If (a, b) ∈ Ht, then the spectrum spec
(
[(a, b)]t

)
of [(a, h)]t is

spec
(
[(a, b)]t

)
=

{
Re (a)±

√
Re (a)2 − det

(
[(a, b)]t

)}
,

in C. More precisely, if
a = x+ yi, b = u+ vi ∈ C,

with x, y, u, v ∈ R and i =
√
−1 in C, then

spec
(
[(a, b)]t

)
=
{
x± i

√
y2 − tu2 − tv2

}
in C. (13)
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Proof. The spectrum (13) is obtained by (12). See [1]. �

Observe that if (a, 0) ∈ Ht, then

[(a, 0)]t =

(
a 0
0 a

)
in Ht2, (14)

satisfying
spec

(
[(a, 0)]t

)
= {a, a} in C,

by (13). Motivated by (13) and (14), define a surjection,

σt : Ht → C, (15)

by

σt ((a, b))
def
=


a = x+ yi if b = 0 in C

x+ i
√
y2 − tu2 − tv2 if b 6= 0 in C,

for all (a, b) ∈ Ht, with a = x+ yi and b = u+ vi in C. Note that this surjection σt of (15) is not injective.

Definition 4. The surjection σt : Ht → C of (15) is called the t(-scaled)-spectralization on Ht. The
images {σt (ξ)}ξ∈Ht are said to be t(-scaled)-spectral values.

By the t-spectralization σt, one can define the following concept.

Definition 5. Let ξ ∈ Ht be a hypercomplex number having its t-spectral value σt (ξ) ∈ C. The realization
of (σt (ξ) , 0) ∈ Ht,

[(σt (ξ) , 0)]t =

 σt (ξ) 0

0 σt (ξ)

 ∈ Ht2,
is called the t(-scaled)-spectral form of ξ, denoted by Σt (ξ) in Ht2.

Note that the conjugate-notation in the above definition is symbolically understood in the sense that:
if

σt ((a, b)) = x+ i
√
y2 − tu2 − tv2,

with
y2 − tu2 − tv2 < 0,

where a = x+ yi and b = u+ vi in C, equivalently, if

σt ((a, b)) = x−
√
tu2 − tv2 − y2 ∈ R,

then the symbol,

σt ((a, b))
means

= x+ i
√
R = x− i

√
R = x+

√
tu2 − tv2 − y2,

“in R,” where R = y2 − tu2 − tv2 in R. Of course, if R ≥ 0 and hence, if

σt ((a, b)) = x+ i
√
R in C,

then σt ((a, b)) = x− i
√
R is the usual conjugate of σt ((a, b)) in C.

Definition 6. Two hypercomplex numbers ξ, η ∈ Ht are said to be t(-scaled)-spectral-related, if

σt (ξ) = σt (η) in C.
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By definition, the t-spectral relation is an equivalence relation on Ht. So, every hypercomplex number
ξ of Ht induces its equivalence class,

ξ̃
def
= {η ∈ Ht : η is t-spectral related to ξ} in Ht,

and hence, the quotient set,

H̃t
def
=
{
ξ̃ : ξ ∈ Ht

}
, (16)

is well-established. The quotient set H̃t of (16) is equipotent (or, bijective) to C.
Recall that, in the operator algebra B (H) on a Hilbert space H, two operators T and S are said to be

similar in B (H), if there exists an invertible operator U ∈ B (H), such that

S = U−1TU in B(H).

Definition 7. Let T, S ∈ Ht2 be realizations of certain hypercomplex numbers of Ht, for t ∈ R. They are
said to be similar “in Ht2,” if there exists an invertible “U ∈ Ht2,” such that

S = U−1TU in Ht2.

Also, hypercomplex numbers ξ and η are said to be similar in Ht, if their realizations [ξ]t and [η]t are

similar in Ht2.

Let (a, b) ∈ Ht with a = x+ yi and b = u+ vi. Then

[(a, b)]t =

(
a tb

b a

)
∈ Ht2,

having its determinant,

det
(
[(a, b)]t

)
= |a|2 − t |b|2 =

(
x2 + y2

)
− t
(
u2 + v2

)
,

meanwhile, the t-spectral form Σt ((a, b)) of (a, b) is

Σt ((a, b)) =

 x+ i
√
y2 − tu2 − tv2 0

0 x− i
√
y2 − tu2 − tv2

 ,

in Ht2, having its determinant,

det (Σt ((a, b))) = x2 +
∣∣∣y2 − tu2 − tv2∣∣∣ .

It shows that, det
(
[(a, b)]t

)
can be negative in R, meanwhile det (Σt ((a, b))) is always non-negative, for

some t ∈ R, i.e.,
det
(
[(a, b)]t

)
6= det (Σt ((a, b))) , in general.

It implies that [(a, b)]t and Σt ((a, b)) are not similar in Ht2, in general, for some t ∈ R.

Lemma 1. If t < 0 in R, then every hypercomplex number h ∈ Ht is similar to (σt (h) , 0) ∈ Ht, where
σt (h) is the t-spectral value of h. Equivalently,

t < 0 =⇒ [h]t and Σt (h) (17)

are similar in Ht2.
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Proof. If h = (a, 0) ∈ Ht, where t < 0, then

[(a, 0)]t =

(
a 0
0 a

)
= Σt ((a, 0)) in Ht2,

since σt ((a, 0)) = a in C. Therefore, [(a, 0)]t and Σt ((a, 0)) are clearly similar in Ht2. Meanwhile, if

h = (a, b) ∈ Ht with b 6= 0, then [h]t and Σt (h) are similar in Ht2, because there exists

qh =

(
1,

w − a
tb

)
∈ Ht,

such that
Σt (h) = [qh]−1

t [h]t [qh]t in Ht2,

for any w ∈ C \ {0} (e.g., see [1] for details). Therefore, if t < 0, then [h]t and Σt (h) are similar in Ht2, for
“all” h ∈ Ht. �

By (17), we obtain the following result in [1, 2].

Proposition 3. Suppose t < 0 in R. Then

t < 0 =⇒ [t-spectral relation
equi
= similarity on Ht, ]

where “
equi
= ” means “being equivalent to, as equivalence relations.”

Proof. See [1, 2] in details. �

2.4. Scaled Hypercomplex Rings Ht as R-Vector Spaces

From below, for convenience, we denote the t-scaled multiplication (·t) simply by (·) if there are no
confusions, i.e.,

h1h2
denote

= h1 ·t h2 in Ht, ∀h1, h2 ∈ Ht.
In this section, we define a vector space,

Ht = spanR ({1, i, jt, kt}) , (18)

generated by its basis,
Bt = {1, i, jt, kt} ,

over the real field R, under the relation on Bt:

i2 = −1, j2t = t = k2t , (19)

i
1 ↙ ↖−t
jt −→

1
kt

and

i
t ↗ ↘−1

jt ←−
−1

kt ,

where the first diagram means that

ijt = kt, jtkt = −ti, kti = jt,

and the second diagram means that

jti = −kt, ktjt = ti, ikt = −jt.

i.e., the set Ht of (18) is a vector space over R (in short, a R-vector space) whose R-basis Bt satisfies the
relation (19).
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Lemma 2. Let Ht be the t-scaled hypercomplex ring for t ∈ R. Then it is a R-vector space,

Ht = spanR {1, i, jt,kt} , (20)

1 = (1, 0) , i = (i, 0) , jt = (0, 1) , and kt = (0, i) .

And the basis elements i, jt and kt of (20) satisfies that

i2 = −1, j2t = t1 = k2
t ,

ijt = kt, ktjt = −ti, kti = jt, (21)

ikt = −jt, jtkt = ti, jti = −kt.

Proof. See [2] for details. �

By (20) and (21), we have the following result.

Proposition 4. Every t-scaled hypercomplex ring Ht is isomorphic to the R-vector space Ht = spanRBt
of (18) whose R-basis Bt satisfies the relation (19), for all t ∈ R.

Proof. As a R-vector space (20), the t-scaled hypercomplex ring Ht satisfies

Ht = spanR {1, i, jt,kt} .

Then one can define the R-basis-preserving bijection Φ : Ht →Ht by

Φ (x1 + yi + ujt + vkt) = x+ yi+ ujt + vkt,

in Ht. �

By the above structure theorem, one can re-define Ht as follows.

Definition 8. Re-define our t-scaled hypercomplex ring Ht by

Ht
def
=

x+ yi+ ujt + vkt

∣∣∣∣∣∣∣∣
x, y, u, v ∈ R

i2 = −1, j2t = t = k2t
ijt = kt, jtkt = −ti, kti = jt
ikt = −jt, ktjt = ti, jti = −kt

 , (22)

as a R-vector space spanR {1, i, jt, kt}.

Remark 1. Note that if we understand Ht as the t-scaled hypercomplex ring, then each element h
of Ht is regarded as a (2× 2)-matrix [h]t ∈ H

t
2, under its Hilbert-space representation

(
C2, πt

)
“over

C.” Meanwhile, if we regard Ht as the vector space (22), then every element h of Ht is a vector in
spanR {1, i, jt, kt}, “over R.” Note that

Ht 3 x+ yi+ ujt + vkt = (x+ yi) + (u+ vi) jt,

since ijt = kt by (22). i.e., h = (a, b) ∈ Ht with a, b ∈ C, if and only if h = a + bjt ∈ Ht. So, we will use
the notations,

(a, b) , or a+ bjt, in Ht,

alternatively from below.

Proposition 5. For any scale t ∈ R, the t-scaled hypercomplexes,

Ht is an algebra over R (in short, a R -algebra). (23)



From Quaternions to Split Quaternions 27

Proof. Since Ht is both a ring and a R-vector space, it forms a R-algebra. �

Remark and Notation 1. As we have seen in Section 2, the set Ht of all t-scaled hypercomplex numbers
is a unital ring algebraically; and it is a R-vector space analytically; and it forms a R-algebra operator-
algebraically. So, from below, we call Ht, the t-scaled hypercomplexes as a ring, or a R-vector space, or a
R-algebra, case-by-case.

Recall that, in [2], we restricted the normalized trace τ = 1
2 tr on M2 (C), where tr is the usual trace

on M2 (C), to the t-scaled realization Ht2, i.e.,

τ
(
[(a, b)]t

)
= τ

(
a tb

b a

)
=
a+ a

2
= Re (a) ,

implying the existence of a trace, also denoted by τt, on Ht,

τt ((a, b)) = Re (a) , ∀ (a, b) ∈ Ht.

Also, see Section 4 below. Note here that even though τ is a trace on M2 (C) over C, the restriction τ is a
linear functional on Ht “over R.” From this trace τ on Ht, we defined a definite, or indefinite semi-inner
product 〈, 〉t on Ht over R, by

〈h1, h2〉t
def
= τ

(
h1h
†
2

)
, ∀h1, h2 ∈ Ht.

In particular, it forms a definite inner product if t < 0, or an indefinite inner product if t > 0, or an
indefinite semi-inner product if t = 0 (See [2]). So, one can get the semi-norm ‖.‖t,

‖h‖t
def
=
√∣∣〈h, h〉t∣∣, ∀h ∈ Ht,

where |.| is the absolute value on R, making Ht as a R-Hilbert space if t < 0, or a complete R-semi-normed
space if t ≥ 0 (See [2]).

However, in this paper, we simply understand the t-scaled hypercomplexes Ht as a R-algebra equipped
with the usual 4-dimensional R-vector space norm ‖.‖4. i.e., we define a norm ‖.‖4 on the R-vector space
Ht = spanR {1, i, jt, kt} simply by

‖x+ yi+ ujt + vkt‖4
def
= ‖(x, y, u, v)‖4 =

√
x2 + y2 + u2 + v2, (24)

where ‖.‖4 in the first equality is the usual norm on R4. Then one can understand Ht as a Banach space,
for all t ∈ R. Recall and note that in a finite-dimensional vector space (over R, or over C), all norms are
equivalent (e.g., [21, 22]), and hence, the above norm ‖.‖4 is well-defined on the 4-dimensional R-vector
space Ht. So, Ht forms a Banach algebra over R (in short, a R-Banach algebra).

Corollary 1. If ‖.‖4 is the norm (24) on the t-scaled hypercomplexes Ht, then Ht forms a R-Banach
algebra, for all t ∈ R.

Proof. By (23), the t-scaled hypercomplexes Ht forms a R-algebra. As we discussed in the above paragraph,
the norm ‖.‖4 of (24) is well-defined on the 4-dimensional R-vector space Ht = spanR {1, i, jt, kt}. Since
every norm on a finite-dimensional vector space is complete (e.g., [21, 22]), this norm ‖.‖4 is complete on
Ht, i.e., Ht forms a R-Banach space. So, as an algebra, Ht is a R-Banach algebra. �
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3. Scale-Shift Operators {St,s : Ht → Hs}t,s∈R
In this section, we consider the t-scaled hypercomplexes Ht as a R-Banach algebra equipped with the norm
‖.‖4 of (24), for all t ∈ R. Define functions,

St1,t2 : Ht1 → Ht2 , (25)

by

St1,t2 (x+ yi+ ujt1 + vkt1)
def
= x+ yi+ ujt2 + vkt2 ,

in Ht2 , for all x+yi+ujt1 + vkt1 ∈ Ht1 with x, y, u, v ∈ R, for any t1, t2 ∈ R. Indeed, the function St1,t2 of
(25) is a well-defined bijective function from Ht1 onto Ht2 , because it is R-basis-preserving map. Moreover,
it is a R-linear transformation because

St1,t2 (r1h1 + r2h2) = r1St1,t2 (h1) + r2St1,t2 (h2) ,

in Ht2 , for all r1, r2 ∈ R and h1, h2 ∈ Ht1 , for t1, t2 ∈ R. By the definition (25), if t1 = t = t2 in R, then
St,t is the identity R-linear transformation It, i.e., It (h) = h = St,t (h), for all h ∈ Ht. Note that, by the
finite-dimensionality of {Ht}t∈R of (22) over R, this bijective R-linear transformations {St1,t2}t1,t2∈R are

bounded (or, continuous under R-linearity).

Lemma 3. The functions {St1,t2 : Ht1 → Ht2}t1,t2∈R of (25) are R-Banach-space-isomorphisms.

Proof. It is shown by the very definition (25), since the bijection St1,t2 preserves the basis {1, i, jt1 , kt1} of
Ht1 onto the basis {1, i, jt2 , kt2} of Ht2 under R-linearity, for any t1, t2 ∈ R. The boundedness is guaranteed
since

‖x+ yi+ ujt2 + vkt2‖4 = ‖(x, y, u, v)‖4 = ‖x+ yi+ ujt1 + vkt1‖4 ,

for all x, y, u, v ∈ R. �

If we consider Ht as a unital ring
(
C2,+, ·

) denote
=

(
C2,+, ·t

)
for any t ∈ R, then the R-isomorphism

{St1,t2}t1,t2∈R of (25) is understood to be the morphisms,

St1,t2 ((a, b)) = (a, b) ∈ Ht2 , ∀ (a, b) ∈ Ht1 (26)

for all t1, t2 ∈ R, as topological-ring-isomorphisms (or, continuous ring-isomorphisms), inducing the
equivalent topological-ring-isomorphisms, also denoted by{

St1,t2 : Ht12 → H
t2
2

}
t1,t2∈R

, (27)

satisfying

St1,t2

(
a t1b

b a

)
=

(
a t2b

b a

)
∈ Ht12 , ∀

(
a t1b

b a

)
∈ Ht12 ,

for all t1, t2 ∈ R.

Lemma 4. The R-isomorphisms {St1,t2}t1,t2 are topological-ring-isomorphisms in the sense that:

St1,t2 : (a, b) ∈ Ht1 7−→ (a, b) ∈ Ht2 , (28)

and

St1,t2 :

(
a t1b

b a

)
∈ Ht12 7−→

(
a t2b

b a

)
∈ Ht22 ,

for all (a, b) ∈ C2, and t1, t2 ∈ R.
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Proof. The functions in (28) are well-defined by (26) and (27), respectively. Since Ht andHt2 are isomorphic
rings under the representations

(
C2, πt

)
for all t ∈ R, it is enough to check that St1,t2 of (27) is a topological-

ring-isomorphism from Ht1 onto Ht2 , for all t1, t2 ∈ R. Let’s fix t1, t2 ∈ R. Then, since St1,t2 of (25) is
a R-isomorphism, the function St1,t2 of (27) is a bijective. It is indeed a topological-ring-isomorphism
satisfying

St1,t2

(
[h1]t1 [h2]t1

)
= St1,t2

(
[h1]t1

)
St1,t2

(
[h2]t1

)
,

in Ht22 , for h1, h2 ∈ Ht1 . Indeed, one has

St1,t2

(
[h1]t1 [h2]t1

)
= St1,t2

(
[h1h2]t1

)
where

h1h2
denote

= h1 ·t1 h2 in Ht2
= [h1h2]t2

where

h1h2 = h1 ·t2 h2 in Ht1

= [h1]t2 [h2]t2 =
(
St1,t2

(
[h1]t1

))(
St1,t2

(
[h2]t1

))
in Ht22 . It shows that this bijection St1,t2 of (27) is a ring-homomorphism, and hence, a ring-isomorphism

from Ht12 onto Ht22 . The continuity of this ring-isomorphism St1,t2 of (27) is guaranteed by that of the
R-isomorphism St1,t2 of (25). �

By the above two lemmas, one can conclude the following result.

Theorem 6. The bijections {St1,t2 : Ht1 → Ht2}t1,t2∈R of (25) are R-Banach-algebra-isomorphisms.

Proof. Since Ht is both a topological ring
(
C2,+, ·

)
and a R-Banach space spanR {1, i, jt, kt}, it forms a

R-Banach algebra, in particular, the completeness of Ht is guaranteed by its finite-dimensionality of Ht
over R, for all t ∈ R. By the two lemmas, the bijections {St1,t2}t1,t2∈R are bijective bounded multiplicative
R-linear transformations, equivalently, they form bounded R-algebra-isomorphisms. Finally, consider that,
for all h = x+ yi+ ujt1 + vkt1 ∈ Ht1 , we have

‖h‖4 =
√
x2 + y2 + u2 + v2, in Ht1 ,

and
‖St1,t2 (h)‖4 = ‖x+ yi+ ujt2 + vkt2‖4 =

√
x2 + y2 + u2 + v2,

in Ht2 , implying that the bounded R-algebra-isomorphism St1,t2 is isometric from Ht1 onto Ht2 , for all
t1, t2 ∈ R. �

The above theorem shows that the bijections {St1,t2}t1,t2∈R of (25) preserves operator-algebraic

structures of the scaled hypercomplexes {Ht}t∈R by interchanging scales. Also, one can verify that

S−1
t1,t2 = St2,t1 , ∀t1, t2 ∈ R

Definition 9. The R-Banach-algebra-isomorphisms St1,t2 of (25) are called the scale-shift operators from
t1 to t2 (in short, (t1, t2)-shifts), for all t1, t2 ∈ R.

By the above theorem, all (t1, t2)-shifts St1,t2 are R-Banach-algebra-isomorphisms from Ht1 onto Ht2
for all t1, t2 ∈ R.
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Remark 3.1. As we have seen above, our scale-shifts {St1,t2}t1,t2∈R are R-Banach-algebra-isomorphisms.

So, the (t1, t2)-shift St1,t2 preserves R-Banach-algebraic properties of Ht1 onto those of Ht2 , for any
t1, t2 ∈ R. Meanwhile, the invertibility and spectral properties on “the t-scaled hypercomplex ring” Ht
are considered “over C,” for t ∈ R. Thus, one cannot confirm that our R-Banach-algebra isomorphisms
{St1,t2}t1,t2∈R acting “over R,” preserve these invertibility and the spectral properties of Section 2 ”over
C.”

Proposition 7. Let h = (a, b) ∈ Ht, and St,s, the (t, s)-shift. Then St,s (h) is invertible in Hs, if and
only if St,s (h) ∈ Hinvs , if and only if

|a|2 − s |b|2 6= 0.

Proof. By definition, St,s (h) = (a, b) ∈ Hs. So, it is invertible in Hs, if and only if it is contained in the
group-part Hinvs of Hs, if and only if

det
(
[(a, b)]s

)
= |a|2 − s |b|2 6= 0.

�

The above proposition illustrates that the invertibility on Ht is not preserved by the (t, s)-shift St,s, in
general. For instance, suppose (a, b) ∈ H×t satisfies

|a|2 − t |b|2 = 0,

in Ht, equivalently, (a, b) ∈ H×singt . It means that t ≥ 0 by (8). If s < 0, then

St,s ((a, b)) = (a, b) ∈ H×s ,

and hence,
det
(
[(a, b)]s

)
= |a|2 − s |b|2 > 0,

implying that St,s ((a, b)) ∈ Hinvs in Hs. So, indeed, our scale-shifts do not preserve the invertibility on
scaled hypercomplexes, in general. It shows that our (t, s)-shift St,s “does” preserve the ring-structures of
Ht to those of Hs, however, it does not preserve noncommutative-field structure of Hs (where s < 0) to
that of Ht (where t ≥ 0).

Theorem 8. Suppose t, s < 0 in R. Then

h ∈ Ht is invertible ⇐⇒ St,s (h) ∈ Hs is invertible (29)

Proof. Assume that t, s < 0 in R, and let St,s be the (t, s)-shift. Since t, s < 0, one has

Hr = Hinvr ∪ {(0, 0)} , ∀r = t, s,

by (10). Thus, if h 6= (0, 0) in Ht, then St,s (h) 6= (0, 0) in Hs; and if q 6= (0, 0) in Hs, then S−1
t,s (q) =

Ss,t (q) 6= (0, 0) in Ht. Therefore, the invertibility (29) holds. �

Also, we have the following result.

Theorem 9. Suppose t ≥ 0 and s < 0, and assume that h = (a, b) ∈ H×t in Ht. Then St,s (h) is invertible
in Hs. As a special case, if h ∈ Hinvt , then St,s (h) ∈ Hinvs in Hs. i.e.,

t ≥ 0, s < 0 =⇒ [h is non-zero =⇒ St,s (h) is invertible] , (30)

and hence,
t ≥ 0, s < 0 =⇒ [h is invertible =⇒ St,s (h) is invertible] .
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Proof. Recall that if t ≥ 0, then Ht = Hinvt t Hsingt , with non-empty block Hsingt ; and if s < 0, then
Hs = Hinvs t {(0, 0)} by (8) and (10). Since our (t, s)-shift St,s is a R-Banach-algebra isomorphism, it
assign (0, 0) ∈ Ht to (0, 0) ∈ Hs. Thus, by (8) and (10),

St,s
(
H×t
)

= Hinvs .

So, the first statement of (30) holds. So, as a special case of this first statement, the second statement of
(30) immediately holds true, too. �

The above relation (30) shows that if t ≥ 0 and s < 0, then the invertibility on Ht is preserved to be
that on Hs via the (t, s)-shift St,s. However, the (t, s)-shift St,s actually assigns all non-invertible non-zero
elements of Ht to invertible elements of Hs, too, by (30).

Theorem 10. Let t, s ≥ 0, and suppose h = (a, b) ∈ Hinvt is invertible in Ht. If |a|2 > t |b|2 and if s ≤ t,

then St,s (h) ∈ Hinvs is invertible in Hs. Similarly, if |a|2 < t |b|2 and it s ≥ t, then St,s (h) ∈ Hinvs is
invertible in Hs. i.e.,

|a|2 > t |b|2 , s ≤ t =⇒ St,s (a, b) ∈ Hinvs , (31)

and
|a|2 < t |b|2 , s ≥ t =⇒ St,s (a, b) ∈ Hinvs .

Proof. Assume that t, s ≥ 0 and h = (a, b) ∈ Hinvt in Ht. By its invertibility in Ht,

det
(
[h]t
)

= |a|2 − t |b|2 6= 0,

if and only if
either |a|2 > t |b|2 , or |a|2 < t |b|2 .

Also, the corresponding s-scaled hypercomplex number St,s (h) ∈ Hs satisfies that

det
(
[St,s (h)]s

)
= det

(
a sb

b a

)
= |a|2 − s |b|2 .

So, if |a|2 > t |b|2, and s ≤ t, then

|a|2 > t |b|2 ≥ s |b|2 =⇒ |a|2 > s |b|2 =⇒ |a|2 − s |b|2 6= 0,

and hence, St,s (h) ∈ Hinvs is invertible in Hs. Similarly, if |a|2 < t |b|2 and s ≥ t, then

|a|2 < t |b|2 ≤ s |b|2 =⇒ |a|2 < s |b|2 =⇒ |a|2 − s |b|2 6= 0,

and hence, St,s (h) ∈ Hinvs is invertible in Hs. Therefore, the relations of (31) hold. �

The above three theorems characterizes some cases where our (t, s)-shift St,s preserves the invertibility
on Ht to that on Hs, even though it does not preserve in general.

Then how about the spectral properties on {Ht}t∈R?

Proposition 11. Let h = (a, b) ∈ Ht, with a = x+ yi and b = u+ vi in C, and St,s, the (t, s)-shift. Then

σs (St,s (h)) = x+ i
√
y2 − su2 − sv2, (32)

and hence,

spec (St,s (h)) =
{
x± i

√
y2 − su2 − sv2

}
in C.
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Proof. Since St,s (h) = (a, b) ∈ Hs, for h = (a, b) ∈ Ht, its s-spectral value satisfies

σs ((a, b)) = x+ i
√
y2 − su2 − sv2 denote

= z,

in C, and hence,
spec ((a, b)) = {z, z} in C,

by (13) and (15). �

The proof of (32) illustrates that t-spectral values on Ht are not preserved by those on Hs, under the
action of the (t, s)-shift St,s, whenever t 6= s in R. For example, let’s assume that (a, b) ∈ H×t , with
a = x+ yi and b = u+ vi in C, satisfies

σt ((a, b)) = x+ i
√
y2 − tu2 − tv2 = x−

√
tu2 + tv2 − y2 ∈ R,

equivalently, y2 − tu2 − tv2 < 0 for t. If

y2 − su2 − sv2 > 0 for s,

then
σs (St,s ((a, b))) = x+ i

√
y2 − su2 − sv2 ∈ (C \ R) .

So, in such a case, the (t, s)-shift St,s does not preserve the spectral property of (a, b) ∈ Ht to that of
(a, b) ∈ Hs.

As one can see in Propositions 21 and 25, indeed, even though the scale-shifts {St1,t2}t1,t2∈R are R-
Banach-algebra-isomorphisms “over R,” they do not preserve the invertibility and spectral-properties on
the scaled hypercomplex rings {Ht}t∈R studied in Section 2.

Now, from the R-Banach algebras {Ht}t∈R, define a “pure-algebraic” R-algebra H by

H
def
= ⊕a

t∈R
Ht (33)

where ⊕a is the pure-algebraic direct product of R-algebras. By the definition (33), every element T of H
is expressed by

T = ⊕
t∈R

ht ∈H , with ht ∈ Ht, ∀t ∈ R.

But, it means actually that there exists N ∈ N, such that

T =
N
⊕
j=1

htj in H , with htj ∈ H×tj , ∀j = 1, ..., N, (34)

understood to be

T =

(
N
⊕
j=1

htj

)
⊕
(

⊕
s∈R\{t1,...,tN}

(0 + 0i+ 0js + 0ks)

)
,

by the algebraic direct product ⊕a. i.e., an element T = ⊕
t∈R

ht ∈ H has only finitely-many “non-zero”

direct summands by the pure-algebraic direct product ⊕a. If

h1 ∈ Ht1 and h2 ∈ Ht2 in H ,

then

h1 + h2 =

 h1 + h2 ∈ Ht1 , if t1 = t2

h1 ⊕ h2 ∈ Ht1 ⊕Ht2 otherwise,

(35)
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h1h2 =


h1h2 ∈ Ht1 if t1 = t2

O = ⊕
t∈R

0 ∈H otherwise,

in H , by (32), because

hj = hj ⊕

(
⊕

t∈R\{tj}
0

)
∈H , ∀j = 1, 2.

On this R-algbebra H of (31), for any s ∈ R, define an operator Ss acting on H by

Ss

(
⊕
t∈R

ht

)
def
= ⊕

t∈R
St,t+s (ht) , (36)

for all ⊕
t∈R

ht ∈ H , with ht ∈ Ht, for all s ∈ R, where St,t+s in the right-hand side of (34) are the

(t, t+ s)-shifts. So, the definition (34) actually means that

Ss

(
⊕
t∈R

ht

)
= Ss

(
N
⊕
j=1

htj

)
def
=

N
⊕
j=1

Stj ,tj+s
(
htj
)
,

for any fixed s ∈ R, where Stj ,tj+s are the (tj , tj + s)-shifts, for all j = 1, ..., N .

Definition 10. The R-algebra H = ⊕a
t∈R

Ht of (33) is called the (scaled-)hypercomplex R-algebra. The

function Ss of (36) on H is called the hypercomplex-shift operator by s ∈ R (in short, s-hypercomplex
shift) on H .

By the definition (36) of hypercomplex shifts {Ss}s∈R, one obtains the following result.

Theorem 12. An s-hypercomplex shift Ss is a R-algebra-isomorphism on H , for all s ∈ R, i.e.,

H
alg
= Ss (H ) , ∀s ∈ R, (37)

where “
alg
=” means “being R-algebra-isomorphic to.”

Proof. Let H = ⊕a
t∈R

Ht be the hypercomplex R-algebra, which is the pure-algebraic direct product of

the scaled hypercomplexes {Ht}t∈R. For each direct summand Ht for t ∈ R, the (t, t+ s)-shift St,t+s :
Ht → Ht+s is a R-Banach-algebra-isomrophism, for any s ∈ R. So, the function Ss is a bijective R-linear
transformation satisfying

Ss (r1T1 + r2T2) = r1Ss (T1) + r2Ss (T2) ,

by (35), for all r1, r2 ∈ R and T1, T2 ∈H , and hence, it becomes a R-vector-space isomorphism for s ∈ R.
Moreover,

Ss (T1T2) = Ss (T1)Ss (T2) , ∀T1, T2 ∈H ,

by (35), implying that Ss is a bijective multiplicative R-vector-space isomorphism, equivalently, a R-
algebra-isomrophism, for s ∈ R. Therefore the relation (37) holds. �

By definition, one obtains the following result.

Proposition 13. Let Ss be the s-hypercomplex shift (36) on the hypercomplex R-algebra H , for s ∈ R.
Then

S−1
s = S−s, on H . (38)



34 I. Cho

Proof. Since all hypercomplex shifts {St}t∈R are R-algebra-isomorphisms on H , their inverses
{
S−1
t

}
t∈R

are well-defined on H , too. Observe that, for any

T = ⊕
t∈R

ht
let
=

N
⊕
j=1

htj ∈H ,

in the sense of (32), we have

S−sSs (T ) = S−s

(
N
⊕
j=1

htj+s

)
=

N
⊕
j=1

h(tj+s)−s = T,

and

SsS−s (T ) = Ss

(
N
⊕
j=1

htj−s

)
=

N
⊕
j=1

h(tj−s)+s = T,

by (33), where ht+s
denote

= St,t+s (ht), for all t, s ∈ R, implying that S−1
s = S−s, for all s ∈ R. Therefore,

the invertibility (38) for {Ss}s∈R holds true. �

By (38), one can conclude that

{Ss}s∈R = {S−s}s∈R =
{
S−1
s

}
s∈R

,

set-theoretically. This set-equalities motivate the following result.

Theorem 14. Let S
denote

= {Ss}s∈R be the collection of all hypercomplex shifts on the hypercomplex
R-algebra H . Then the pair (S , ·) forms an abelian group satisfying

(S , ·) group
= (R,+) , the time-flow, or the continuum, (39)

where the operation (·) on S is the isomorphism-product (or, the composition), and “
group

= ” means “being
group-isomrophic to.”

Proof. Let S be the set of all hypercomplex shifts, and supppose (·) is the isomorphism-product. Then,
for any Ss1 , Ss2 ∈ S , one has

Ss1Ss2 = Ss1+s2 , on H ,

since

(Ss1Ss2)

(
⊕
t∈R

ht

)
= Ss1

(
⊕
t∈R

ht+s2

)
= ⊕
t∈R

ht+s2+s1 = Ss1+s2

(
⊕
t∈R

ht

)
,

for all ⊕
t∈R

ht ∈ H (understood to be (34)), with ht ∈ Ht, for all s1, s2 ∈ R, where ht+s
denote

= St,t+s (ht),

for all t, s ∈ R. So,

(Ss1Ss2)Ss3 = Ss1+s2+s3 = Ss1 (Ss2Ss3) ,

on H , for all s1, s2, s3 ∈ R. Also, this family S contains S0 ∈ S such that

SsS0 = Ss+0 = Ss = S0+s = S0Ss, on H ,

for all s ∈ R. Recall that, by (38), every Ss ∈ S has its inverse S−1
s = S−s in S . Thus, the pair (S , ·)

forms a group. Moreover,

Ss1Ss2 = Ss1+s2 = Ss2+s1 = Ss2Ss1 , on H ,

for all s1, s2 ∈ R, implying that this group (S , ·) is an abelian.
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Define now a function Ψ : S → R by

Ψ (Ss) = s, ∀s ∈ R.

Then it is a well-defined bijection from S onto R, satisfying

Ψ (Ss1Ss2) = Ψ (Ss1+s2) = s1 + s2 = Ψ (Ss1) + Ψ (Ss2) ,

for all s1, s2 ∈ R. So, this bijection Ψ is a group-homormophism, and hence, it is a group-isomrophism.
Therefore, the groups (S , ·) and (R,+) are isomorphic. �

By (39), the family S = {Ss}s∈R of the hypercomplex shifts forms an abelian group isomorphic to the
time-flow (R,+). It means that the family S provides a classical dynamics on the system H , the direct
product of the scaled-hypercomplexes {Ht}t∈R up to (37).

In the first part of this section, we showed that even though our (t, s)-shift St,s is a R-Banach-algebra-
isomrophism from Ht onto Hs, it does not preserve the invertibility and the spectral properties on the
scaled hypercomplexes, considered in Section 2. Similarly, one can verify that all elements of S does not
preserve the invertibility and spectral properties of Section 2 on the direct summands {Ht}t∈R, in general,
inside the hypercomplex R-algebra H . From below, we fix

T =
N
⊕
j=1

htj ∈H , with htj ∈ H×tj , ∀j = 1, ..., N, (40)

for N ∈ N.

Lemma 5. Let T ∈ H be in the sense of (40). Then T is invertible in the subalgebra
N

⊕a
j=1

Htj of H , if

and only if the direct summands htj are invertible in Htj , for all j = 1, ..., N. i.e.,

T is invertible in
N

⊕a
j=1

Htj ⇐⇒ htj are invertible in Htj ,∀j = 1, ..., N (41)

Proof. Let Hj be Hilbert spaces (over C), and B (Hj), the corresponding operator algebras, for j = 1, ..., N ,
for N ∈ N, and suppose Aj are the C∗-subalgebras of B (Hj), for all j = 1, ..., N . Then it is well-known
that

N
⊕
j=1

Tj is invertible in
N
⊕
j=1

Aj ⇐⇒ Tj are invertible in Aj , ∀j = 1, ..., N.

(e.g., see [22]). Under our canonical Hilbert-space representations
(
C2, πtj

)
of the tj-scaled hypercomplex

ring Htj , realized to be the Hilbert-space operators in Htj2 (in M2 (C)), we have

T is invertible in
N

⊕a
j=1

Hj ⇐⇒ htj are invertible in Ht, ∀j.

Therefore, the characterization (41) is obtained. �

Note that, the invertibility of T of (41) is considerd on the “subalgebra
N

⊕a
j=1

Htj” in the hypercomplex

R-algebra H (not wholly on H ) because

T =
N
⊕
j=1

htj =

(
N
⊕
j=1

htj

)
+

(
⊕

t∈R\{t1,...,tN}
(0 + 0i+ 0jt + 0kt)

)
is clearly not invertible (in any senses over R, or over C) in H .
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Theorem 15. Let Ss be the s-hypercomplex shift on the hypercomplex R-algebra H , and let T ∈H be in
the sense of (40). Then

Ss (T ) is invertible in
N

⊕a
j=1

Htj+s,⇐⇒ Ss
(
htj
)
∈ Htj is invertible,∀j (42)

Proof. The relation (42) holds by (41). �

The above theorem characterizes the invertibility on certain subalgebras inside H by the invertibility
on {Ht}t∈R (over C).

Lemma 6. Let T ∈H be in the sense of (40). Define the spectrum spec (T ) of T by

spec (T )
def
= spec

(
N
⊕
j=1

[
htj
]
tj

)
. (43)

Then

spec (T ) =
N
∪
j=1

{
σtj
(
htj
)
, σtj

(
htj
)}
, in C (44)

where σtj are the tj-spectralizations, for all j = 1, ..., N .

Proof. Let T be in the sense of (40) with its non-zero direct summands htj ∈ H×tj in Htj , for j = 1, ..., N .

Then all elements of the subalgebra
N

⊕a
j=1

Htj of the hypercomplex R-algebra H are acting on
(
C2
)⊕N

=

C2 ⊕ ...⊕ C2︸ ︷︷ ︸
N-times

, because each direct summands Htl of
N

⊕a
j=1

Htj has the canonical representation
(
C2, πtl

)
, for

all l = 1, ..., N . i.e., this subalgebra has a Hilbert-space representation,((
C2
)⊕N

, π
denote

=
N
⊕
j=1

πtj

)
,

over C. Under this representation, if T is as above, then it is realized to be

π (T ) =
N
⊕
j=1

πtj
(
htj
)

=
N
⊕
j=1

[
htj
]
tj
,

in π

(
N

⊕a
j=1

Htj
)

=
N

⊕a
j=1
Htj2 , contained in (M2 (C))⊕N . So, the spectrum spec (T ) of (43) is well-defined, i.e.,

spec (T )
def
= spec

(
N
⊕
j=1

[
htj
]
tj

)
,

in the operator algebra B
(
C2N

)
.

Suppose Tl ∈ B (Hl) are operators on Hilbert spaces Hl, for l = 1, 2. It is well-known that if

T1 ⊕ T2 ∈ B (H1)⊕B (H2) = B (H1 ⊕H2) ,

then
spec (T1 ⊕ T2) = spec (T1) ∪ spec (T2) ,

in C (e.g., see [21] and [22]). Therefore, if spec (T ) is defined as in (43), then

spec (T ) =
N
∪
j=1

spec
([
htj
]
tj

)
, in C.

Since
spec

([
htj
]
tj

)
=
{
σtj
(
htj
)
, σtj

(
htj
)}
,

for all j = 1, ..., N , the set-equality (44) holds. �
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By the relation (44) induced by the definition (43), we have the following result.

Theorem 16. Let T ∈ H be in the sense of (40), and let Ss ∈ S be the s-hypercomplex shift on H .
Then spec (Ss (T )) is well-defined as in (43), and

spec (Ss (T )) =
N
∪
j=1

{
σtj+s

(
Stj ,tj+s

(
htj
))
, σtj+s

(
Stj ,tj+s

(
htj
))}

(45)

in C, where σtj+s are the (tj + s)-spectralizations, for all j = 1, ..., N .

Proof. The set-equality (45) is obtained by (44) under the acton of Ss ∈ S . �

In this section, we studied the system H , the hypercomplex R-algebra, of scaled hypercomplexes {Ht},
and certain R-algebra-isomorphisms S = {Ss}s∈R on H , inducing a trivial dynamics on {Ht}t∈R. Unfor-
tunately, the R-algebra-isomorphisms of S preserve neither the invertibility nor the spectral properties on
{Ht}t∈R inside H in general, however, at least, we observed why they are not preserved by S , and how
they are understood under the action of S .

4. Certain Analytic Data on Ht Depending on a Scale t ∈ R
In this section, we focus on each t-scaled hypercomplexes Ht for a scale t ∈ R, and study certain analytic
data on Ht in terms of a natural linear functional over R (in short, a R-linear functional). In particular,
we are interested in a R-linear functional τt on Ht induced by the normalized trace τ = 1

2 tr on M2 (C),
where tr is the usual trace on M2 (C) “over C.” Since the t-scaled hypercomplexes Ht is regarded as its
realization Ht2 = πt (Ht) up to its representation

(
C2, πt

)
, the normalized trace τ on M2 (C) is restricted

to be the R-linear functional τ |Ht2 . Define a R-linear functional τt on Ht by

τt
def
= τ ◦ πt : Ht → R, (46)

where πt is the action of Ht, and τ is the normalized trace on M2 (C). Note that the restriction τt of the
C-trace τ becomes a R-trace on Ht, because

τt ((a, b)) = τ
(
[(a, b)]t

)
= τ

((
a tb

b a

))
=

1

2
(a+ a) , (47)

i.e.,

τt ((a, b)) =
1

2
(a+ a) = ReC (a) ,

where ReC (•) is the real part on C.
By understanding Ht as spanR {1, i, jt, kt}, one can define the real part Re (•) and the imaginary part

Im (•) on Ht by

Re (x+ yi+ ujt + vkt) = x, (48)

and

Im (x+ yi+ ujt + vkt) = yi+ ujt + vkt,

for all x, y, u, v ∈ R.

Proposition 17. The R-linear functional τt of (46) is identified with the real part Re (•) of (48) on Ht.
i.e.,

τt (h) = Re (h) , ∀h ∈ Ht. (49)
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Proof. We have τt = Re (•) on Ht, by (46) and (47). Indeed,

τt (x+ yi+ ujt + vkt) = τt ((x+ yi, u+ vi)) ,

identical to
ReC (x+ yi) = x = Re (x+ yi+ ujt + vkt) ,

for all x+ yi+ ujt + vkt ∈ Ht with x, y, u, v ∈ R. �

By the above proposition, one can identify the R-trace τt with the real part Re (•) on Ht by (49). Then
the R-basis elements {1, i, jt, kt} of Ht satisfy the following analytic data in terms of the R-trace τt of (46).

Theorem 18. If τt = Re (•) is the R-trace (46), then

(τt (1n))∞n=1 =
(
1, 1, 1, 1, 1, 1, 1, 1, ...

)
; (50)

and
(τt (in)) =

(
0,−1, 0, 1, 0,−1, 0, 1, ...

)
,

where the symbol “r1, r2, r3, r4” means the first four entries repeatedly, or periodically appeared in a

sequence (rn)∞n=1; and

τt (jnt ) = τt (knt ) =


0 if n ∈ 2N− 1

t
n
2 if n ∈ 2N,

(51)

for all n ∈ N, where kY = {ky : y ∈ Y } and Y ± l = {y ± l : y ∈ Y }, for all subsets Y of N, and k, l ∈ N.

Proof. Clearly, one has 1n = 1 = 1 + 0i + 0jt + 0kt in Ht, for all n ∈ N, since 1 is the unity of Ht, and
hence,

τt (1n) = τt (1) = Re (1) = 1, ∀n ∈ N.
Also, we have

in =

 ±i if n ∈ 2N− 1
−1 if n ∈ 2N \ 4N
1 if n ∈ 4N,

and hence,

τt (in) = Re (in) =

 0 if n ∈ 2N− 1
−1 if n ∈ 2N \ 4N
1 if n ∈ 4N,

for all n ∈ N. Thus the analytic-data sequences of (50) are obtained.
Observe that j2t = t, j3t = j2t jt = tjt, j

4
t = t2, and j5t = t2jt, etc.. So, inductively, we have

jnt =

 t
n−1
2 jt if n ∈ 2N− 1

t
n
2 if n ∈ 2N,

for all n ∈ N. Similarly, one obtains that

knt =

 t
n−1
2 jt if n ∈ 2N− 1

t
n
2 if n ∈ 2N,

for all n ∈ N. Therefore,

Re (jnt ) = Re (knt ) =


0 if n ∈ 2N− 1

t
n
2 if n ∈ 2N,

for all n ∈ N. It implies the analytic data (51). �
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The above theorem fully characterizes the analytic data of the R-basis elements {1, i, jt, kt} in terms
of the R-trace τt on Ht, by (50) and (51). Especially, by (51), on the 0-scaled hypercomplexes H0, the
R-basis elements j0 and k0 have the 0-analytic data in the sense that

(τ0 (jn0 ))∞n=1 = (τ0 (kn0 ))∞n=1 =
(
0, 0, 0, 0, 0, 0, ...

)
.

Let H = ⊕a
t∈R

Ht be the hypercomplex R-algebra (33). Then one can define a “unbounded” R-linear

functional ϕ : H → C by

ϕ
def
= ⊕

t∈R
τt, on H , (52)

i.e.,

ϕ

(
N
⊕
l=1

htl

)
=

N∑
l=1

τtl (htl) , ∀
N
⊕
l=1

htl ∈H .

Since every element T ∈H is a “finite” direct sum in ∪
t∈R

Ht, the above morphism ϕ of (52) is well-defined

on H , as a “unbounded” linear functional over R. Even though it is unbounded, it is strongly bounded in
the sense that: for each “fixed” T ∈H , |ϕ (T )| <∞, because (i) T is a finite direct sum, and (ii) {τt}t∈R
are bounded on {Ht}t∈R, respectively.

5. On the hypercomplex R-Algebra H

Let H be the hypercomplex R-algebra (33), and let S = {Ss}s∈R be the group (39) of all hypercomplex
shifts on H satisfying (38). At the end of Section 4, we defined a R-linear functional (52),

ϕ : H → R, (53)

by

ϕ

(
⊕
t∈R

ht

)
def
=
∑
t∈R

τt (ht) =
∑
t∈R

Re (ht) ,

where τt = Re (•) are the R-traces (46), for all t ∈ R. For example, if t1, t2, t3, t4 are mutually distinct in
R \ {0}, and

h = jt1 ⊕ kt2 ⊕ it3 ⊕ jt4 ∈H ,

where jt1 ∈ Ht1 , kt2 ∈ Ht2 , it3 = i ∈ Ht3 , and jt4 ∈ Ht4 in H , then

hn = jnt1 ⊕ k
n
t2 ⊕ i

n
t3 ⊕ j

n
t4 ∈H , ∀n ∈ N,

and hence,
ϕ (hn) = τt1 (jnt1) + τt2 (knt2) + τt3 (in) + τt4 (jnt4) ,

identical to
ϕ (hn) = Re (jnt1) + Re (knt2) + Re (in) + Re (jnt4) ,

in R, for all n ∈ R, where

Re (jnt1) = Re (knt2) = Re (jnt4) =


0 if n ∈ 2N− 1

t
n
2 if n ∈ 2N,

and

Re (in) =


0 if n ∈ 2N− 1

−1 if n ∈ 2N \ 4N

1 if n ∈ 4N,

for all n ∈ N, by (50) and (51).
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5.1. Analytic Data on H Deformed by the Action of (S , ·)
In this section, we study analytic data on the hypercomplex R-algebra H = ⊕a

t∈R
Ht, with respect to the

R-trace ϕ = ⊕
t∈R

τt of (53), and let

S = {Ss : s ∈ R}

be the family of s-hypercomplex shifts (37) on H , inducing the time-flow (S , ·) on H , by (39). Even
though each s-shift Ss ∈ S is a R-algebra-isomorphisms on H , one may verify that the action of S on
H deforms the ϕ-depending analytic data on H .

Observe that, since Ss ∈ S is a R-algebra-isomorphism on H , assigning,

Ss

(
N
⊕
j=1

htj

)
=

N
⊕
j=1

htj+s
denote

=
N
⊕
j=1

Stj ,tj+s
(
htj
)
,

for any ht ∈ Ht in H , and N ∈ N, for all t ∈ R, one has

Ss (wt) = wt+s ∈ {it+s = i, jt+s, kt+s} ∈H ,

for all wt ∈ {it = i, jt, kt} ∈ Ht, implying that

ϕ ((Ss (wt))
n) = ϕ (wnt+s) 6= ϕ (wnt ) , for n ∈ N,

since
τt+s (wnt+s) = Re (wnt+s) 6= Re (wnt ) = τt (wnt ) ,

for n ∈ N, in general, by (50) and (51).

Lemma 7. Let t ∈ R, and let 1, it = i, jt, kt be the R-basis elements of Ht in H . If Ss ∈ S , then

(ϕ (Ss (1)n))∞n=1 =
(
1, 1, 1, 1, 1, 1, 1, 1, ...

)
, (54)

(ϕ (Ss (it)
n))∞n=1 =

(
0,−1, 0, 1, 0,−1, 0, 1, ...

)
= (ϕ (int ))∞n=1 , (55)

and

ϕ (Ss (jt)
n) = ϕ (Ss (kt)

n) =


0 if n ∈ 2N− 1

(t+ s)
n
2 if n ∈ 2N,

(56)

for all n ∈ N, for all s ∈ R.

Proof. Consider that
Ss (1) = 1 ∈ Ht+s, in H ,

and
Ss (it) = it+s = i ∈ Ht+s, in H ,

for all s, t ∈ R, satisfying

(ϕ (Ss (1)n))∞n=1 = (τt+s (1n))∞n=1 = (Re (1n))∞n=1 ,

respectively,
(ϕ (Ss (it)

n))∞n=1 = (τt+s (int+s))
∞
n=1 = (Re (int ))∞n=1 ,

Therefore, the relations (54) and (55) hold by (50), for all t, s ∈ R.
Similarly, since

(ϕ (Ss (jt)
n))∞n=1 = (τt+s (jnt+s))

∞
n=1 = (τt+s (knt+s))

∞
n=1 = (ϕ (Ss (kt)

n))∞n=1 ,

the analytic data (56) is obtained by (51), for the replaced scale t+ s ∈ R. �
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By the above lemma, we obtain the following result.

Theorem 19. For all T =
N
⊕
l=1

htl ∈H with htl ∈ H×tl , for l = 1, ..., N , for all N ∈ N,

(ϕ (Ss (T )n))∞n=1 = (ϕ (Tn))∞n=1 as R-sequences, (57)

if and only if
s = 0, in R.

Proof. By definition, for any s ∈ R, since Ss is a R-algebra isomorphism on H , we have

Ss (T )n = Ss (Tn) = Ss

(
N
⊕
l=1

hntl

)
=

N
⊕
l=1

hntl+s ∈H ,

with htl+s = Stj ,tj+s (htl), for all l = 1, ..., N , for all n ∈ N, and

ϕ (Ss (h)n) =
N∑
l=1

Re (hntl+s) ∈ R.

So, to find the characterization of the equalities ϕ (Ss (T )n) = ϕ (Tn) for all n ∈ N, for “all” such T ∈H ,
it suffices to show that

τtl+s (hntl) = τtl+s (Ss (htl)
n) = τt (hntl) , ∀l = 1, ..., N.

Now, fix l ∈ {1, ..., N}, and
htl = x+ yitl + ujtl + vktl ∈ Htl , in H ,

with x, y, u, v ∈ R. Then

Ss (htl) = x+ yitl+s + ujtl+s + vktl+s ∈ Htj+s,

in H .
Recall and note that, we have

(τt (int ))∞n=1 =
(
0,−1, 0, 1, 0,−1, 0, 1, ...

)
, (58)

and
(τt (ζnt ))∞n=1 = (τt (κnt ))∞n=1 =

(
0, t, 0, t2, 0, t3, 0, t4, 0, ...

)
,

by (50) and (51). So, if s = 0, then
τt (hntl) = τt+0 (S0 (htl)

n) , ∀n ∈ N,
by (58). Conversely, let’s assume that

τt (hnt ) = τt+s (hnt+s) = τt+s (Ss (hnt )) , ∀n ∈ N,

and
s 6= 0 in R.

Then, by (50) and (51), in particular, by (51),

τt+s (hntl+s) 6= τt (hntl) , in general,

by (58), contradicting our assumption. Therefore, ϕ (Ss (T )n) = ϕ (Tn) in H , for all T ∈ H , and n ∈ N,
if and only if s = 0 in R. So, the relation (57) holds. �

The above characterization (57) seems natural, but it illustrates that the only 0-hypercomplex shift
S0, which is the group-identity of S , can preserve analytic data on H up to the R-trace ϕ. Equivalently,
the analytic data on H up to the R-linear functional ϕ are distorted by the action of S \ {S0}. So, it is
interesting enough to consider how they are deformed where s→∞, or s→ −∞, for the shifts {Ss}s∈R,
by applying (54), (55) and (56).
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5.2. Some Asymptotic Analytic Data on H under the Action of (S , ·)
In this section, we focus on studying how certain asymptotic action of the group (S , ·) affect the analytic

data on the hypercomplex R-algebra H
def
= ⊕a

t∈R
Ht, up to the R-linear functional ϕ = ⊕

t∈R
τt of (53). In other

words, we are interested in the cases where we take s-hypercomplex shifts Ss ∈ S , where either s → ∞,
or s→ −∞ in R, equivalently, where |s| is “suitably” big enough in R.

Recall that, for any t-scaled hypercomplexes,

Ht = spanR

{
1t

denote
= 1, it

denote
= i, jt, kt

}
,

as a direct summand of H , one obtains the following analytic data up to the R-linear functional ϕ on
H ; and

(ϕ (1nt ))∞n=1 =
(
1, 1, 1, 1, 1, 1, 1, 1, ...

)
,

(ϕ (int ))∞n=1 =
(
0,−1, 0, 1, 0,−1, 0, 1, ...

)
, (59)

ϕ (jnt ) = ϕ (knt ) =


0 if n ∈ 2N− 1

t
n
2 if n ∈ 2N,

for all n ∈ N, by (50) and (51). These data (59) provide the building blocks for computing the analytic
data on H up to ϕ (Also, see Section 6 below).

Theorem 20. Let {1t = 1, it = i, jt, kt} be the R-basis of the t-scaled hypercomplexes Ht, as a direct sum-
mand of the hypercomplex R-algebra H , for t ∈ R, and let S = {Ss}s∈R be the family of all hypercomplex
shifts on H . Then (

ϕ
((

lim
s→∞

Ss (1t)
)n))∞

n=1
=
(
1, 1, 1, 1, 1, 1, ...

)
(60)(

ϕ
((

lim
s→∞

Ss (it)
)n))∞

n=1
=
(
0,−1, 0, 1, 0,−1, 0, 1, ...

)
(61)

and

ϕ
((

lim
s→∞

Ss (wt)
)n)

=

 0 if n ∈ 2N− 1

∞ if n ∈ 2N,
(62)

for all n ∈ N, for all wt ∈ {jt, kt}, where ∞ in (62) means “undefined,” and the limit “ lim
s→∞

” is taken

under the usual topology on R group
= S .

Proof. First of all, observe that, for any s ∈ R,

Ss (1nt ) = 1nt+s = 1, Ss (int ) = int+s = in,

and
Ss (jnt ) = jnt+s, Ss (knt ) = knt+s,

for all n ∈ N, in the direct summand Ht+s of H , since Ss ∈ S is identified with a R-algebra-isomorphism
St,t+s, the (t, t+ s)-shift from Ht onto Ht+s. It shows that

lim
s→∞

Ss (1nt ) = lim
s→∞

1nt+s = lim
s→∞

1 = 1 =
(

lim
s→∞

Ss (1t)
)n

,

lim
s→∞

Ss (int ) = lim
s→∞

int+s = lim
s→∞

in = in =
(

lim
s→∞

S (it)
)n

,

where the second and the last equalities hold since {Ht+s}s∈R are R-Banach algebras, and

lim
s→∞

Ss (jnt ) = lim
s→∞

jnt+s =
(

lim
s→∞

jt+s
)n

=
(

lim
s→∞

Ss (jt)
)n

,
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and

lim
s→∞

Ss (knt ) = lim
s→∞

knt+s =
(

lim
s→∞

kt+s
)n

=
(

lim
s→∞

Ss (kt)
)n

,

i.e., (
lim
s→∞

Ss (1t)
)n

= 1,
(

lim
s→∞

S (it)
)n

= in, (63)

and (
lim
s→∞

Ss (jt)
)n

= lim
s→∞

jnt+s,
(

lim
s→∞

Ss (kt)
)n

= lim
s→∞

knt+s.

for all n ∈ N. So,

ϕ
((

lim
s→∞

Ss (1t)
)n)

= τt+s (1) = 1,

and

ϕ
((

lim
s→∞

S (it)
)n)

= τt+s (in) =

 0 if n ∈ 2N− 1
−1 if n ∈ 2N \ 4N
1 if n ∈ 4N,

by (59), for all n ∈ N. Thus, the analytic data (60) and (61) hold.
Also, we have

ϕ
((

lim
s→∞

Ss (jt)
)n)

= lim
s→∞

τt+s (jnt+s) , (64)

and

ϕ
((

lim
s→∞

Ss (kt)
)n)

= lim
s→∞

τt+s (knt+s) ,

by (63). i.e., if wt ∈ {jt, kt}, then

ϕ
((

lim
s→∞

Ss (wt)
)n)

= lim
s→∞

τt+s (wnt+s) ,

by (64), since (S , ·) group
= (R,+), and R is complete under its usual topology, and {τt}t∈R are bounded on

{Ht}t∈R. So,

ϕ
((

lim
s→∞

Ss (wt)
)n)

= lim
s→∞

τt+s (wnt+s) =


lim
s→∞

0 if n ∈ 2N− 1

lim
s→∞

(t+ s)
n
2 if n ∈ 2N

by (59)

=

 0 if n ∈ 2N− 1

∞ if n ∈ 2N,

because if s→∞, then t+ s→∞ in R, for all arbitrarily fixed t ∈ R. Therefore, the formula (62) holds.
�

The above theorem not only provides the asymptotic analytic data (60), (61) and (62) on H , but also
lets us verify that if the scale t is suitably big in the sense that t→∞ in R, then the analytic data on the
t-scaled hypercomplexes Ht under the R-trace τt becomes vague, especially, by (62). i.e., if t is suitably
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big in R, then the analytic data (τ (hn))∞n=1 of h ∈Ht are mostly undefined to be ∞ by (62). Indeed, if

T =
N
⊕
l=1

htl ∈H , with htl ∈ Htl ,

and if there exists at least one tl0 ∈ {t1, ..., tN}, such that

htl0 = x+ yitl0 + ujtl0 + vktl0 ∈ Htl0 ⊂H ,

with

either u 6= 0, or v 6= 0, in R,

then

ϕ
((

lim
s→∞

Ss (Tn)
))

=
N∑
l=1

(
lim
s→∞

τtl+s (hntl+s)
)
→∞,

by (62).

Corollary 2. Let T =
N
⊕
l=1

htl ∈H with htl ∈ H×tl . Then

∣∣∣ϕ(( lim
s→∞

Ss (T )
)n)∣∣∣ <∞, (65)

if and only if

htl ∈ spanR {1, itl = i} ⊂ Htl , ∀l = 1, ..., N.

Proof. The boundedness characterization (65) holds true by (60), (61) and (62). �

The above corollary again illustrates that the ϕ-depending asymptotic analytic data becomes vague on
the hypercomplex R-algebra H , in general.

Theorem 21. Let {1t = 1, it = i, jt, kt} be the R-basis of the t-scaled hypercomplexes Ht, as a direct
summand of the hypercomplex R-algebra H , for t ∈ R. Then(

ϕ

((
lim

s→−∞
Ss (1t)

)n))∞
n=1

=
(
1, 1, 1, 1, 1, 1, ...

)
(66)

(
ϕ

((
lim

s→−∞
Ss (it)

)n))∞
n=1

=
(
0,−1, 0, 1, 0,−1, 0, 1, ...

)
(67)

and

ϕ

((
lim

s→−∞
Ss (wt)

)n)
=


0 if n ∈ 2N− 1

−∞ if n ∈ 2N \ 4N

∞ if n ∈ 4N,

(68)

for all n ∈ N, for all wt ∈ {jt, kt}.
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Proof. Similar to the proof Theorem 38, one can get that(
lim

s→−∞
Ss (1t)

)n
= 1,

(
lim

s→−∞
S (it)

)n
= in,

and (
lim

s→−∞
Ss (jt)

)n
= lim
s→∞

jnt+s,

(
lim

s→−∞
Ss (kt)

)n
= lim
s→∞

knt+s.

So, we have

ϕ

((
lim

s→−∞
Ss (1t)

)n)
= Re (1) = 1,

and

ϕ

((
lim

s→−∞
S (it)

)n)
= Re (in) =

 0 if n ∈ 2N− 1
−1 if n ∈ 2N \ 4N
1 if n ∈ 4N,

for all n ∈ N. Thus, the analytic data (66) and (67) hold. Also, if wt ∈ {jt, kt}, then

ϕ

((
lim

s→−∞
Ss (wt)

)n)
= Re

(
lim
s→∞

wnt+s

)
,

where wt+s ∈ {jt+s, kt+s}, respectively, for all s ∈ R. Observe that

ϕ

((
lim

s→−∞
Ss (wt)

)n)
= Re

(
lim
s→∞

wnt+s

)
= lim
s→∞

Re (wnt+s) =



lim
s→−∞

0 if n ∈ 2N− 1

lim
s→−∞

(
sgn (t+ s) |t+ s|

n
2

)
if n ∈ 2N \ 4N

lim
s→−∞

|t+ s|
n
2 if n ∈ 4N,

by (59), where

sgn (r) =

{
1 if r ≥ 0
−1 if r < 0,

for all r ∈ R, and hence, it goes to

=


0 if n ∈ 2N− 1

−∞ if n ∈ 2N \ 4N

∞ if n ∈ 4N,

for all n ∈ N, because

sgn (t+ s) = −1, as s→ −∞.

It shows that the formula (68) holds, too. �

This theorem not only gives the asymptotic analytic data (66), (67) and (68) on H , but also makes us
verify that if |t| is suitably big, especially, t → −∞ in R, then the analytic data on Ht up to the R-trace
τt becomes vague, in particular, by (68), implying that most of the analytic data on the hypercomplex
R-algebra H up to the R-linear functional ϕ are undetermined, under the action of S .
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5.3. The Hypercomplex [−1, 1]-Algebra H [−1, 1]
In Section 5.2, we considered the asymptotic analytic data on the hypercomplex R-algebra H = ⊕a

t∈R
Ht up

to the R-trace ϕ = ⊕
t∈R

τt, under the dynamical action of (S , ·) group
= (R,+). The main results there showed

that most asymptotic analytic data of the non-zero elements T ∈H are undefined up to ϕ, especially, by
(62) and (68). Motivated by these asymptotic information, we construct a sub-structure H [−1, 1] of H ,
where [−1, 1] = {r ∈ R : −1 ≤ r ≤ 1} be the closed interval of R. Define H [−1, 1] by a R-algebra,

H [−1, 1]
def
= ⊕a

t∈[−1,1]
Ht, in H . (69)

By (69), this R-algebra H [−1, 1] is a subalgebra of H . Of course, similar to (69), one can define the
R-subalgebras,

H [t1, t2] = ⊕a
t∈[t1,t2]

Ht of H ,

for any t1 ≤ t2 in R, axiomatizing H[t,t] = Ht, for all t ∈ R. There are no typical reasons why we take
the closed interval [−1, 1] in (69), instead of taking arbitrary closed intervals of R. However, one may /
can realize that this direct product algebra H [−1, 1] is constructed by the pure-algebraic direct product
“from the quaternions H−1 to the split-quaternions H1,” in H , induced by negative scales, the 0-scale,
and positive scales, all together. Moreover, one can avoid the vague asymptotic analytic data on H up to
ϕ in H [−1, 1]. See the following result.

Corollary 3. For all t ∈ [−1, 1], if 1t = 1 and it = i in Ht, then

(ϕ (1nt ))∞n=1 =
(
1, 1, 1, 1, 1, 1, 1, 1, ...

)
,

(ϕ (int ))∞n=1 =
(
0,−1, 0, 1, 0,−1, 0, 1, ...

)
, (70)

ϕ (jnt ) = ϕ (knt ) =


0 if n ∈ 2N− 1

t
n
2 if n ∈ 2N,

for all n ∈ N, where

− 1 ≤ tm ≤ 1, ∀t ∈ [−1, 1] , ∀m ∈ N. (71)

Proof. The proofs of (70) are done by (59). The boundedness condition (71) for the formulas (70) is trivial
since t ∈ [−1, 1]. �

In fact, the condition (71) on (70) allows us to avoid the undefined asymptotic analytic data up to ϕ.

Definition 11. The subalgebra H [−1, 1] of (69) is called the hypercomplex [−1, 1]-algebra (over R in
the hypercomplex R-algebra H ).

6. On the Hypercomplex [−1, 1]-Algebra H [−1, 1]
Let H [−1, 1] = ⊕a

t∈[−1,1]
Ht be the hypercomplex [−1, 1]-algebra (69) embedded in the hypercomplex R-

algebra H . Note that, on H [−1, 1], the analytic data (70) holds under the boundedness condition (71),
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up to the (restriction of the) R-linear functional ϕ. Let

ht = x1 + xit it + xjtjt + xktkt ∈ Ht in H [−1, 1] , (72)

for t ∈ [−1, 1] in R, where x1, xit , xjt , xkt ∈ R. Let

ζt
def
=


jt√
|t|

if t 6= 0

j0 if t = 0,

(73)

and

κt
def
=


kt√
|t|

if t 6= 0

k0 if t = 0,

in Ht. Then the elements it = i, ζt and κt satisfy that

i2t = −1, ζ2t = s0 (t) = κ2t , (74)

and

it
1 ↙ ↖−s0(t)
ζt −→

1
κt

and

it
s0(t) ↗ ↘−1

ζt ←−
−1

κt ,

where

s0 (t) =

 1 if t > 0
−1 if t < 0
0 if t = 0,

for all t ∈ R, where the first diagram of (74) means that

itζt = κt, ζtκt = −s0 (t) it, κtit = ζt,

and the second diagram of (74) means that

itκt = −ζt, κtζt = s0 (t) it, ζtit = −κt,

by (19). In particular, the first line of (74) holds because

ζ2t =


(

jt√
|t|

)2

= t
|t| ∈ {±1} if t 6= 0

j20 = 0 if t = 0,

and

κ2t =


(

kt√
|t|

)2

= t
|t| ∈ {±1} if t 6= 0

k20 = 0 if t = 0,

for all t ∈ R. If ζt and κt are in the sense of (73) in Ht, then the element ht ∈ Ht of (72) can be re-expressed
to be

ht = x1 + xit it + x̂jtζt + x̂ktκt, (75)
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with

x̂jt =

 xjt
√
|t| if t 6= 0

xj0 if t = 0,

and

x̂kt =

 xkt
√
|t| if t 6= 0

xk0
if t = 0.

Note that the function “x ∈ R 7−→ x
√
|t| ∈ R” is bijective on R, whenever t 6= 0. And hence, without

loss of generality, the element ht ∈ Ht of (72) is always expressed to be (75), where {it, ζt, κt} satisfy the
relation (74). i.e.,

Ht
def
= spanR {1, it, jt, kt}

iso
= spanR {1, it, ζt, κt} , (76)

where ζt and κt are in the sense of (73), for all t ∈ [−1, 1] (in fact, for all t ∈ R). Then, by (70), we obtain
the following result.

Theorem 22. Let {1, it = i, ζt, κt} ⊂ Ht, where ζt and κt are in the sense of (73), in the hypercomplex
[−1, 1]-algebra H [−1, 1]. Then

(ϕ (1n))∞n=1 =
(
1, 1, 1, 1, 1, 1, 1, 1, ...

)
,

(ϕ (int ))∞n=1 =
(
0,−1, 0, 1, 0,−1, 0, 1, ...

)
, (77)

(ϕ (ζnt ))∞n=1 = (ϕ (κnt ))∞n=1 =
(

0, s0 (t) , 0, s0 (t)2, 0, s0 (t) , ...
)
.

Proof. The first two analytic sequences of (77) are obtained directly by (70). Meanwhile, if w ∈ {ζt, κt},
then

wn =

 s0 (t)
n−1
2 w if n ∈ 2N− 1

s0 (t)
n
2 if n ∈ 2N,

in Ht ⊂H [−1, 1] by (74), for all n ∈ N, implying that

ϕ (wn) = τt (wn) = Re (wn) =


0 if n ∈ 2N− 1

s0 (t)
n
2 if n ∈ 2N,

for all n ∈ N. Remark that, since s0 (t) ∈ {−1, 0, 1} for a fixed t ∈ N,

s0 (t)2k−1 = s0 (t) , and s0 (t)2k = |s0 (t)| = s0 (t)2 ,

in {−1, 0, 1}, for all k ∈ N. Thus, one has that

ϕ (wn) =


0 if n ∈ 2N− 1

s0 (t) if n ∈ 2N \ 4N

|s0 (t)| = s0 (t)2 if n ∈ 4N,

for all n ∈ N. Therefore, the last analytic sequence of (77) holds. �
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The last analytic sequence of (77) can be refined as follows: (i) if t > 0, then(
0, 1, 0, 1, 0, 1, 0, 1, ...

)
;

and (ii) if t < 0, then (
0,−1, 0, 1, 0,−1, 0, 1, ...

)
;

and (iii) if t = 0, then (
0, 0, 0, 0, 0, 0, 0, 0, ...

)
.

Now, let t ∈ [−1, 1], and

ht = x1 + xit it + xζtζt + xκtκt ∈ Ht (78)

under the relation (76). If we let

Bt
denote

= {1, it, ζt, κt} ⊂ Ht,

then the element ht ∈ Ht of (78) satisfies that

hnt =
∑
w∈Bt

 ∑
(w1,...,wn)∈Bnt ,

n∏
l=1

wl=w

(
n∏
l=1

xwl

)
−

∑
(w1,...,wn)∈Bnt ,

n∏
l=1

wl=−w

(
n∏
l=1

xwl

)w, (79)

in Ht ⊂H [−1, 1], having their real part,

Re (hnt ) =
∑

(w1,...,wn)∈Bnt ,
n∏
l=1

wl=1

(
n∏
l=1

xwl

)
−

∑
(w1,...,wn)∈Bnt ,

n∏
l=1

wl=−1

(
n∏
l=1

xwl

)
(80)

which is identified with τt (hnt ) = ϕ (hnt ), for all n ∈ N.

Lemma 8. Let ht ∈ Ht be in the sense of (72) in H [−1, 1], for t ∈ [−1, 1] in R. Then

ϕ (hnt ) =
∑

(w1,...,wn)∈Bnt ,
n∏
l=1

wl=1

(
n∏
l=1

xwl

)
−

∑
(w1,...,wn)∈Bnt ,

n∏
l=1

wl=−1

(
n∏
l=1

xwl

)
,

(81)

for all n ∈ N, where Bt = {1, it, ζt, κt} is in the sense of (79).

Proof. The analytic data (81) is obtained by (80) in H [−1, 1] up to ϕ, since

ϕ (hnt ) = τt (hnt ) = Re (hnt ) , ∀n ∈ N,

for all ht ∈ Ht in H [−1, 1], for t ∈ [−1, 1]. �

By the above lemma, we obtain the following general result.

Theorem 23. Let T =
N
⊕
l=1

htl ∈H [−1, 1], for t1, ..., tN ∈ [−1, 1] and N ∈ N, where

htl = x
(tl)
1 + x

(tl)
itl

itl + x
(tl)
jtl

ζtl + x
(tl)
ktl

κtl ∈ Htl , (82)

with x
(tl)
wtl
∈ R, for all l = 1, ..., N . Then



50 I. Cho

ϕ (Tn) =
N∑
l=1

 ∑
(w1,...,wn)∈Bntl ,

n∏
l=1

wl=1

(
n∏
l=1

x
(tl)
wl

)
−

∑
(w1,...,wn)∈Bntl ,

n∏
l=1

wl=−1

(
n∏
l=1

x
(tl)
wl

) , (83)

for all n ∈ N, where Btl = {1, itl , ζtl , κtl} ⊂ Htl are in the sense of (79) for all l = 1, ..., N .

Proof. Under hypothesis, one has

ϕ (Tn) =
N∑
l=1

τtl (hntl) =
N∑
l=1

Re (hntl) , ∀n ∈ N,

since

Tn =

(
N
⊕
l=1

htl

)n
=

N
⊕
l=1

hntl in H , ∀n ∈ N.

Thus, the analytic data (83) holds by (81) and (82). �

Now, let

S[−1, 1] = {σ : [−1, 1]→ [−1, 1] | σ is bijective} .

Then one can define a morphism Φσ : H [−1, 1]→H [−1, 1] by

Φσ

(
⊕

t∈[−1,1]
ht

)
def
= ⊕

t∈[−1,1]
hσ(t), ∀ ⊕

t∈[−1,1]
ht ∈H [−1, 1] , (84)

where if ht = x+ yit + uζt + vκt ∈ Ht, under the relation (76), then

hσ(t)
denote

= Φσ (ht) = x+ yiσ(t) + uζσ(t) + vκσ(t),

for x, y, u, v ∈ R, for all σ ∈ S [−1, 1]. Then it is not difficult to check that

Φσ (r1T1 + r2T2) = r1Φσ (T1) + r2Φσ (T2) , (85)

and
Φσ (T1T2) = Φσ (T1) Φσ (T2) , (86)

by (84), for all r1, r2 ∈ R and T1, T2 ∈H [−1, 1].
Suppose A is an arbitrary R-algebra, and let

AutR (A) = {Ψ : A→ A |Ψ is a R-algebra-isomorphism}

be the automorphism group on A, consisting of all (pure-algebraic) R-algebra-isomorphisms on A, equipped
with the isomorphism multiplication (·) (or, the composition).

Proposition 24. The family S [−1, 1]
denote

= {Φσ : σ ∈ S [−1, 1]} forms a subgroup (S [−1, 1] , ·) of the
automorphism group AutR (H [−1, 1]), where Φσ ∈ S [−1, 1] are in the sense of (84). i.e.,

S [−1, 1]
group

⊆ Aut (H [−1, 1]) , (87)

where “
group

⊆ ” means “being a subgroup of.”
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Proof. By (85) and (86), each element Φσ of S [−1, 1] is a well-defined bijective multiplicative R-
linear transformation on H [−1, 1], equivalently, it is a (pure-algebraic) R-algebra-isomorphism (or, a
R-automorphism) on H [−1, 1]. So,

S [−1, 1] ⊆ Aut (H [−1, 1]) , set-theoretically.

Now, let Φσ1 ,Φσ2 ∈ S [−1, 1]. Then, for any T = ⊕
t∈[−1,1]

ht ∈H [−1, 1], we have

(Φσ1Φσ2) (T ) = Φσ1

(
⊕

t∈[−1,1]
hσ2(t)

)
= ⊕
t∈[−1,1]

h(σ1◦σ2)(t),

in H [−1, 1], implying that
Φσ1Φσ2 = Φσ1◦σ2 on H [−1, 1] ,

for all σ1, σ2 ∈ S [−1, 1], where σ1 ◦σ2 is the composition of the bijections σ1 and σ2 in S [−1, 1]. Remark
that, for any σ ∈ S[−1, 1], we have

Φ−1
σ = Φσ−1 ∈ S [−1, 1].

So,
Φσ1Φ−1

σ2
= Φσ1Φσ−1

2
= Φσ1◦σ−1

2
∈ S [−1, 1] ,

in AutR (H [−1, 1]). Therefore,

S [−1, 1]
group

⊆ AutR (H [−1, 1]) ,

proving the relation (87). �

From below, we understand S [−1, 1] = {Φσ : σ ∈ S [−1, 1]} as a subgroup of the automorphism group
AutR (H [−1, 1]) by (87). Now, let

ht = x+ yit + uζt + vκt ∈ Ht in H [−1, 1] ,

where x, y, u, v ∈ R, and ζt and κt are in the sense of (73). Then, for any Φσ ∈ S [−1, 1],

hσ(t)
denote

= Φσ (ht) = x+ yiσ(t) + uζσ(t) + vκt ∈ Hσ(t),

in H [−1, 1], satisfying(
ϕ
(
inσ(t)

))∞
n=1

= (ϕ (in))∞n=1 =
(
0,−1, 0, 1, 0,−1, 0, 1, ...

)
,

(
ϕ
(
ζnσ(t)

))∞
n=1

=
(
ϕ
(
κnσ(t)

))∞
n=1

=
(

0, s0 (σ (t)) , 0, s0 (σ (t))2, ...
)
,

for all n ∈ N, by (77).

Proposition 25. Assume that σ ∈ S [−1, 1] has its fixed point at t ∈ [−1, 1] in the sense that: σ (t) = t
in [−1, 1]. Then, for any h ∈ Ht ⊂H [−1, 1], we have

ϕ (hn) = ϕ (Φσ (h)n) in H [−1, 1] , ∀n ∈ N. (88)

Proof. Assume that t ∈ [−1, 1] is the fixed point of σ ∈ S [−1, 1], i.e., σ (t) = t in [−1, 1]. Then,

σ (Ht) = Hσ(t) = Ht, in H [−1, 1] ,

satisfying
Φσ (h) = h ∈ Ht in H [−1, 1] , ∀h ∈ Ht.

Therefore, the analytic data (88) holds. �
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Now, we consider how the analytic data (83) of H [−1, 1] are affected by the action of S [−1, 1].

Theorem 26. Let ht = x1+xit it+xζtζt+xκtκt ∈ Ht be an element of H [−1, 1], with x1, xit , xζt , xκt ∈ R,
and Φσ ∈ S [−1, 1], for σ ∈ S [−1, 1]. Then

ϕ (Φσ (ht)
n) =

∑
(w1,...,wn)∈Bnσ(t),

n∏
l=1

wl=1

(
n∏
l=1

xwl

)
−

∑
(w1,...,wn)∈Bnσ(t),

n∏
l=1

wl=−1

(
n∏
l=1

xwl

)
,

(89)

for all n ∈ N, where Bσ(t) =
{

1, iσ(t) = i, ζσ(t), κσ(t)
}

in Hσ(t).

Proof. The formula (89) holds by (83). �

By (89), we immediately obtain the following corollary.

Corollary 4. Let T =
N
⊕
l=1

htl ∈H [−1, 1], for t1, ..., tN ∈ [−1, 1] and N ∈ N, where

htl = x
(tl)
1 + x

(tl)
itl

itl + x
(tl)
jtl

jtl + x
(tl)
ktl

ktl ∈ Htl , (90)

with x
(tl)
wtl
∈ R, for all l = 1, ..., N . If Φσ ∈ S [−1, 1], then

ϕ (Φσ (T )n) =
N∑
l=1

 ∑
(w1,...,wn)∈Bnt ,

n∏
l=1

wl=1

(
n∏
l=1

xwl

)
−

∑
(w1,...,wn)∈Bnt ,

n∏
l=1

wl=−1

(
n∏
l=1

xwl

))
, (91)

for all n ∈ N.

Proof. The analytic data (91) holds, by (90). �
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