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Abstract

This paper presents novel polynomials resulting from the convolution of generalized multivariable Hermite
polynomials and Genocchi polynomials. Investigating their properties, such as recurrence relations, explicit
formulas utilizing shift operators, and differential equations, forms the core of our exploration. Moreover,
we derive integro-differential and partial differential equations for these polynomials, thereby enriching the
comprehension and applicability of these hybrid polynomials across diverse mathematical domains.

Key Words: Appell Polynomials, Multivariable-Hermite Polynomials, Recurrence Relation, Shift Opera-
tors, Differential Equations, Applications

AMS 2020 Classification: 33E20, 33C55, 33B10, 33C45, 34D05, 45D05

1. Introduction and Preliminaries

To elucidate the fundamental principle of the factorization method, we briefly explore the comparison
between Maxwell’s and Dirac’s equations, which are both pivotal in physics. Both systems exhibit simi-
lar traits, including the utilization of first-order partial derivatives and adherence to Lorentz invariance
principles. However, a crucial distinction arises from the linearity inherent in Maxwell’s equations, which
can lead to challenges associated with infinite self-energies. In simpler terms, although these systems share
mathematical characteristics and Lorentz invariance, the issue of infinite self-energies is uniquely pertinent
to Maxwell’s equations due to their linear nature.

The factorization method, extensively employed in physics to tackle eigenvalue problems, involves
solving two first-order differential equations that, when combined, yield a second-order differential equation
of equal significance. Additionally, this method encompasses the computation of transition probabilities,
considering the production process, and provides a comprehensive framework for effectively addressing
perturbation issues. In essence, it leverages the solution of two specific types of differential equations to
obtain another equally significant equation, incorporating transition probabilities to understand how a
system evolves. Moreover, it offers a flexible approach to handle perturbation concerns and disruptions
that may affect system stability or accuracy.

We consider a sequence of polynomials denoted as Pn(j1)∞n=0, where n signifies the polynomial degree.

Within this context, two sequences of differential operators, Gn− and Gn+, act upon this polynomial
sequence. These operators exhibit specific properties:
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Pn−1(j1) = Gn−(Pn(j1))

and
Pn+1(j1) = Gn+(Pn(j1)).

An important property, known as the differential equation, is expressed as follows:

Pn(j1) = (Gn+ 1−Gn+){Pn(j1)}. (1)

This equation serves as a foundational element for constructing differential equations using the facto-
rization method. The primary objective is to identify two distinct operators: the multiplicative operator
Gn+ and the derivative operator Gn−, ensuring they fulfill the conditions laid out in equation (1). By
methodically deriving operators that adhere to this equation, we can systematically construct differential
equations through the factorization approach, offering new perspectives and simplifying the analysis and
solution of the equation.

The operational rule guides specific operations or computations associated with these polynomials.
It elucidates how to modify or evaluate the 2VHKdFP using particular mathematical operations or
transformations.

These polynomials are defined by the generating expression:

∞∑
n=0

Y [2]
n (j1, j2)

ξn

n!
= exp(j1ξ + j2ξ

2) (2)

and represented by the series:

Y [2]
n (j1, j2) = n!

[ n
2
]∑

k=0

jk2 jn−2k
1

k!(n− 2k)!
.

Moreover, the Polynomials Y [m]
n (j1, j2, · · · , jm), referred to as multivariable Hermite Polynomials

(MHP), are expressed by the relation:

exp(j1ξ + j2ξ
2 + · · ·+ jmξ

m) =
∞∑
n=0

Y [m]
n (j1, j2, · · · , jm)

ξn

n!
.

With the operational rule:

exp

(
j2

∂2

∂j12
+ j3

∂3

∂j13
+ · · ·+ jm

∂m

∂j1m

)
jn1 = Y [m]

n (j1, j2, · · · , jm), (3)

and the series representation:

Y [m]
n (j1, j2, · · · jm) = n!

[n/m]∑
r=0

jrmY
[m]
n−mr(j1, j2, · · · , jm−1)

r! (n−mr)! .

Special functions, equations, and integers constitute essential subjects of study across numerous
branches of mathematics, physics, and engineering. Among these, Genocchi polynomials and nume-
rals hold significant importance, frequently appearing in fundamental and applied mathematical con-
texts related to approximation theories, interpolation problems, and quadrature rules, as noted in
[1, 2, 3, 4, 5]. Several authors have extensively investigated various extensions of Genocchi polynomi-
als, contributing to the development of mathematical theory and its applications. Notable works include
[6, 7, 8, 9, 10, 11, 12, 13, 14, 15].

The Genocchi polynomials of order r, denoted as F
[r]
n (j1), as defined by:

∞∑
n=0

F[r]
n (j1)

ξn

n!
=

(
2ξ

eξ + 1

)r
ej1ξ, (4)

where n ∈ Z+.
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Setting j1 = 0 in equation (4) yields the corresponding Genocchi numbers F
[r]
n of order r:

F[r]
n := F[r]

n (0)

The factorization method, pioneered by He and Ricci [16], has found widespread application in deriving
differential equations for various types of polynomials, including Appell polynomials and their multivariable
extensions, Bernoulli and Euler polynomials, as detailed in [17] and [18]. Moreover, this technique has
been extended to derive expressions such as integrodifferential and partial differential equations for hybrid
forms, 2D extended, and mixed-type Appell family polynomials, as evidenced in [15] and [19]. Ozarslan
[20] utilized the Appell polynomials to generate a series of finite order differential equations by expanding
the factorization technique using k-times shift operators. These findings have significantly contributed to
establishing recurrence relations, shift operators, and families of differential equations for multivariable
Hermite Appell Polynomials, as indicated by equation (5) in this paper. Undoubtedly, the factorization
approach serves as an invaluable tool for deriving equations for diverse types of polynomials across various
mathematical domains.

The advancement of operational techniques, recurrence relations, shift operators, and families of
differential equations for various polynomial types in different mathematical domains has spurred the

development of multivariable Hermite-Genocchi polynomials. Denoted by YG
[m]
n (j1, j2, j3, · · · , jm), these

polynomials are generated by the expression:

2ξ

eξ + 1
exp (j1ξ + j2ξ

2 + · · ·+ jmξ
m =

∞∑
n=0

YG
[m]
n (j1, j2, j3, · · · , jm)

ξn

n!
. (5)

This generating expression involves applying a suitable linear operator on the product of m Hermite
polynomials.

The subsequent sections of this article delve into exploring the properties and characteristics of mul-
tivariable Hermite-based Genocchi polynomials. Section 2 elucidates the generating relation, recurrence
relation, and shift operators for these polynomials. Furthermore, Section 3 delves into the development
of several families of differential equations tailored to these polynomials. Finally, the concluding section
offers a summary of the findings presented in this article.

2. Recurrence Relations and Shift Operators

This section aims to derive shift operators and recurrence relations for the MVHGP YG
[m]
n (j1, j2, j3, · · · , jm).

Throughout this derivation process, relationships between different instances of the MVHGP

YG[m]
n (j1, j2, j3, · · · , jm) with varying values of the indices n, j1, j2, j3, and so forth are established. These

recurrence relations enable the representation of polynomials in terms of one another, facilitating faster
computations and identification of recurrent patterns. By establishing these relations and shift operators,

a deeper understanding of the properties and behaviors of the MVHGP YG
[m]
n (j1, j2, j3, · · · , jm) is ach-

ieved, which can prove beneficial in various computational, analytical, or application contexts involving

these polynomials. The recurrence relation for the function YG
[m]
n (j1, j2, j3, · · · , jm) is derived based on

the following outcome:

Theorem 1. The MVHGP YG
[m]
n (j1, j2, j3, · · · , jm) fulfill the following recurrence relation:

YG
[m]
n+1(j1, j2, · · · , jm) = (j1 −

1

2
) YG

[m]
n (j1, j2, · · · , jm) +

1

2

n∑
k=1

(
n

k

)
GkYG

[m]
n−k+1(j1, j2, · · · , jm)

+ j2YG
[m]
n−1(j1, j2, · · · , jm) + 3n(n− 1)j3YG

[m]
n−2(j1, j2, · · · , jm)

+ · · ·+ n(n− 1)(n− 2) · · · (n−m+ 1)jmYG
[m]
n−m(j1, j2, · · · , jm), (6)

where Gk denotes the Genocchi numbers of order k.
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Proof. Taking the derivatives of (5) w.r.t. ξ, we find

∞∑
n=0

YGn+1(j1, j2, j3, · · · , jm)
ξn

n!
=

(
j1 + 2 j2t+ 3 j3t

2 + · · ·+m jmt
m−1

) ∞∑
n=0

YGn(j1, j2, j3, · · · , jm)
ξn

n!

− 1

2

∞∑
n=0

∞∑
k=0

YGn(j1, j2, j3, · · · , jm)Gk
ξn+k

n! k!
.

The Cauchy-product rule is applied to the right-hand side (RHS) after simplification and we arrive at
the following conclusion:

∞∑
n=0

YGn+1(j1, j2, j3, · · · , jm)
ξn

n!
=

∞∑
n=0

j1 Gn(j1, j2, j3, · · · , jm)
ξn

n!
+
∞∑
n=0

2n j2 YGn−1(j1, j2, j3, · · · , jm)
ξn

n!

+
∞∑
n=0

3n(n− 1)j3 YGn−2(j1, j2, j3, · · · , jm)
ξn

n!

+ · · ·+
∞∑
n=0

n(n− 1) · · · (n−m+ 1) m jmYGn−m(j1, j2, j3, · · · , jm)
ξn

n!

− 1

2

∞∑
n=0

n∑
k=0

(
n

k

)
YGn−k(j1, j2, j3, · · · , jm)Gk

ξn

n!
.

Further simplifying previous expression , it follows that

∞∑
n=0

YGn+1(j1, j2, j3, · · · , jm)
ξn

n!
=

∞∑
n=0

(
j1 −

1

2

)
Gn(j1, j2, j3, · · · , jm)

ξn

n!
+
∞∑
n=0

2n j2 YGn−1(j1, j2, j3, · · · , jm)
ξn

n!

+
∞∑
n=0

3n(n− 1)j3 YGn−2(j1, j2, j3, · · · , jm)
ξn

n!

+ · · ·+
∞∑
n=0

n(n− 1) · · · (n−m+ 1) mjmYGn−m(j1, j2, j3, · · · , jm)
ξn

n!

+
1

2

∞∑
n=0

n∑
k=1

(
n

k

)
YGn−k+1(j1, j2, j3, · · · , jm)Gk

ξn

n!
.

Comparing the coefficients of like powers of ξ on both sides of previous expression, assertion (6) is
established �

In the following analysis, we present the construction of shift operators for the MVHGP

YG[m]
n (j1, j2, · · · , jm) by establishing the subsequent result:

Theorem 2. The MVHGP YG
[m]
n (j1, j2, · · · , jm) satisfy the listed shift operators:

j1£−n :=
1

n
Dj1 , (7)

j2£−n :=
1

n
D−1
j1
Dj2 , (8)

j3£−n :=
1

n
D−2
j1
Dj3 , (9)

...

jm£−n :=
1

n
D
−(m−1)
j1

Djm , (10)
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j1£+
n := (j1 −

1

2
) +

n∑
k=1

Gk
k!
Dkj1 + 2j2Dj1 + 3j3D

2
j1 + · · ·+mjmD

m−1
j1

(11)

j2£+
n := (j1−

1

2
) +

n∑
k=1

Gk
k!
D
−(k−1)
j1

Dk−1
j2

+ 2j2 D
−1
j1
Dj2 + 3j3 D

−2
j1
D2
j2 + · · ·+mjm D

−(m−1)
j1

Dm−1
j2

, (12)

j3£+
n := (j1−

1

2
)+

n∑
k=1

Gk
k!
D
−2(k−1)
j1

Dk−1
j3

+2j2D
−2
j1
Dj3 +3j3 D

−4
j1
D2
j3 + · · ·+mjm D

−2(m−1)
j1

Dm−1
j3

, (13)

...

jm£+
n := (j1 −

1

2
) +

n∑
k=1

Gk
k!
D
−(k−1)2

j1
Dk−1
jm

+ 2j2D
−(m−1)
j1

Djm

+ 3j3 D
−2(m−1)
j1

D2
jm + · · ·+mjm D

−(m−1)2

j1
Dm−1
jm

, (14)

where

Dj1 :=
∂

∂j1
, Dj2 :=

∂

∂j2
, Dj3 :=

∂

∂j3
and D−1

j1
:=

∫ j1

0

f(η)dη.

Proof. By applying differentiation to equation (5) with respect to j1 and then equating coefficients of
similar powers of ξ on both sides, we derive the following equation:

∂

∂j1
{YG[m]

n (j1, j2, · · · , jm)} = n YG
[m]
n−1(j1, j2, · · · , jm), (15)

As a consequence of the aforementioned steps, we arrive at the following expression:

j1£−n {YG[m]
n (j1, j2, · · · , jm)} =

1

n
Dj1{YG

[m]
n (j1, j2, · · · , jm)} = YG

[m]
n−1(j1, j2, · · · , jm), (16)

thus proving the validity of assertion (7).

Upon differentiating equation (5) with respect to j2 and equating the coefficients of the corresponding
powers of ξ on both sides, we arrive at the following expression:

∂

∂j2
{YG[m]

n (j1, j2, · · · , jm)} = n(n− 1) YG
[m]
n−2(j1, j2, · · · , jm).

The previous expression can alternatively be expressed as

∂

∂j2
{YG[m]

n (j1, j2, · · · , jm)} = n
∂

∂j1
{YG[m]

n−1(j1, j2, · · · , jm)},

thus eventually gives

j2£−n {YG[m]
n (j1, j2, · · · , jm)} =

1

n
D−1
j1
Dj2{YG

[m]
n (j1, j2, · · · , jm)} = YG

[m]
n−1(j1, j2, · · · , jm). (17)

Therefore the validity of assertion (8) is established.
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After differentiating equation (5) with respect to j3 and equating the coefficients of the identical powers
of ξ on both sides, we obtain the following derived expression:

∂

∂j3
{YG[m]

n (j1, j2, · · · , jm)} = n(n− 1)(n− 2) YG
[m]
n−3(j1, j2, · · · , jm). (18)

The previous equation (18) can also be expressed as

∂

∂j3
{YG[m]

n (j1, j2, · · · , jm)} = n
∂2

∂j21
{YG[m]

n−1(j1, j2, · · · , jm)},

thus eventually gives

j3£−n {YG[m]
n (j1, j2, · · · , jm)} =

1

n
D−2
j1
Dj3{YG

[m]
n (j1, j2, · · · , jm)} = YG

[m]
n−1(j1, j2, · · · , jm). (19)

Hence, yielding assertion (9).
Finally, upon differentiating equation (5) with respect to jm and equating the coefficients of the same

powers of ξ on both sides of the resulting equation, we arrive at the following expression:

∂

∂jm
{YG[m]

n (j1, j2, · · · , jm)} = n(n− 1)(n− 2)(n−m+ 1)YG
[m]
n−m(j1, j2, · · · , jm),

and further presented as

∂

∂jm
{YG[m]

n (j1, j2, · · · , jm)} = n
∂m−1

∂jm−1
1

{YG[m]
n−1(j1, j2, · · · , jm)}

and finally gives

jm£−n {YG[m]
n (j1, j2, · · · , jm)} =

1

n
D
−(m−1)
j1

Djm{YG
[m]
n (j1, j2, · · · , jm)} = YG

[m]
n−1(j1, j2, · · · , jm). (20)

Therefore, the validity of assertion (10) is established.

To establish the equation for the raising operator (11), we employ the following expression:

YG
[m]
n−k(j1, j2, · · · , jm) = (j1£−n−k+1 j1£−n−k+2 · · · j1£−n−1 j1£−n ){YG[m]

n (j1, j2, · · · , jm)}, (21)

Thus, in view of expression (16), expression (21) in simplified form can be presented as:

YG
[m]
n−k(j1, j2, · · · , jm) =

(n− k)!

n!
Dkj1{YG

[m]
n (j1, j2, · · · , jm)}. (22)

By substituting equation (22) into the recurrence relation (6), we deduce that:

YG
[m]
n+1(j1, j2, · · · , jm) =

(
(j1 −

1

2
) +

n∑
k=1

Gk
k!
Dkj1 + 2j2Dj1 + 3j3D

2
j1 + · · ·+mjm Dm−1

j1

)

× YG
[m]
n (j1, j2, · · · , jm).

Thus (11) of raising operator j1£+
n is proved.
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In order to demonstrate the raising operator (12), we examine the following relation:

YG
[m]
n−k(j1, j2, · · · , jm) = (j2£−n−k+1 j2£−n−k+2 · · · j2£−n−1 j2£−n ){YG[m]

n (j1, j2, · · · , jm)},

By taking into account equation (17), we can expand the above expression as follows:

YG
[m]
n−k(j1, j2, · · · , jm) =

(n− k)!

k!
D
−(k−1)
j1

D
(k−1)
j2

{YG[m]
n (j1, j2, · · · , jm)}. (23)

By substituting equation (23) into the recurrence relation (6), we can deduce that:

YG
[m]
n+1(j1, j2, · · · , jm) =

(
(j1 −

1

2
) +

n∑
k=1

Gk
k!
D
−(k−1)
j1

Dk−1
j2

+ 2j2D
−1
j1
Dj2 + 3j3D

−2
j1
D2
j2+

· · ·+mjmD
−(m−1)
j1

Dm−1
j2

)
.

Therefore, we have successfully established the validity of Assertion (12) for the raising operator j2£+
n .

To demonstrate the raising operator j3£+n, we consider the following expression:

YG
[m]
n−k(j1, j2, · · · , jm) = (j3£−n−k+1 j3£−n−k+2 · · · j3£−n−1 j3£−n ){YG[m]

n (j1, j2, · · · , jm)}.

By taking into account equation (19), we can expand the above expression as follows:

YG
[m]
n−k(j1, j2, · · · , jm) =

(n− k)!

k!
D
−2(k−1)
j1

D
(k−1)
j3

{YG[m]
n (j1, j2, · · · , jm)}. (24)

By substituting equation (24) into the recurrence relation (6), we find that:

YG
[m]
n+1(j1, j2, · · · , jm) =

(
(j1 −

1

2
) +

n∑
k=1

Gk
k!
D
−2(k−1)
j1

Dk−1
j3

+ 2j2D
−2
j1
Dj3 + 3j3D

−4
j1
D2
j3+

· · ·+mjmD
−2(m−1)
j1

Dm−1
j3

)
.

Therefore, we have successfully established the validity of Assertion (13) for the raising operator j3£+
n .

Finally, To establish the raising operator jm£+
n , we analyze the following expression:

YG
[m]
n−k(j1, j2, · · · , jm) = (jm£−n−k+1 jm£−n−k+2 · · · jm£−n−1 jm£−n ){YG[m]

n (j1, j2, · · · , jm)}.

By taking into account equation (20), we can expand the above expression as follows:

YG
[m]
n−k(j1, j2, · · · , jm) =

(n− k)!

k!
D
−(k−1)2

j1
D

(k−1)
jm

{YG[m]
n (j1, j2, · · · , jm)}. (25)

By substituting equation (25) into the recurrence relation (6), we deduce that:

YG
[m]
n+1(j1, j2, · · · , jm) =

(
(j1 −

1

2
) +

n∑
k=1

Gk
k!
D
−(k−1)
j1

Dk−1
jm

+ 2j2D
−(m−1)
j1

Djm+

3j3D
−2(m−1)
j1

D2
jm + · · ·+mjmD

−(m−1)2

j1
Dm−1
jm

)
.

Thus, expression (14) of raising operator jm£+
n is proved.

�

In the following section, we undertake an examination of the families of differential equations satisfied
by the multivariable Hermite-based Genocchi polynomials. This section offers a comprehensive exploration
of various categories of differential equations, including ordinary differential equations, integro-differential
equations, and partial differential equations. These equations are derived using the factorization method.
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3. Analysis of Differential Equation Families

In this section, we provide detailed explanations of each type of equation, elucidating its stru-
cture and its connection to the multivariable Hermite-based Genocchi polynomials. For the MVHGP

YG
[m]
n (j1, j2, · · · , jm), we establish the differential, integro-differential, and partial differential equations.

Furthermore, we derive the differential equation for the MDHAP YG
[m]
n (j1, j2, · · · , jm) by presenting the

following conclusion:

Theorem 3. The MVHGP YG
[m]
n (j1, j2, j3, · · · , jm) satisfy the following differential equation:(

(j1 −
1

2
)Dj1 +

n∑
k=1

Gk
k!
Dk+1
j1

+ 2j2D
2
j1 + 3j2D

3
j1 + · · ·+ jmD

m
j1 − n

)
YG

[m]
n (j1, j2, j3, · · · , jm) = 0.

Proof. The expressions (7) and (11) of the shift operators are utilized in the factorization relation, as
follows:

j1£−n+1 j1£+
n {YG[m]

n (j1, j2, j3, · · · , jm)} = YG
[m]
n (j1, j2, j3, · · · , jm).

Simplifying the mathematical expression, assertion (??) is proved. �

Theorem 4. The MVHGP YG
[m]
n (j1, j2, j3, · · · , jm) satisfy the following integro-differential equations:(

(j1 −
1

2
)Dj2 +

n∑
k=1

Gk
k!
D
−(k−1)
j1

Dkj2 + 2j2 D
−1
j1
D2
j2 + 3j3 D

−2
j1
D3
j2 + · · ·

+mjm D
−(m−1)
j1

Dmj2 − (n+ 1)Dj1

)
YG

[m]
n (j1, j2, j3, · · · , jm) = 0. (26)

(
(j1 −

1

2
)Dj3 +

n∑
k=1

Gk
k!
D
−(k−1)
j1

Dk−1
j2

Dj3 + 2j2 D
−1
j1
Dj2Dj3 + 3j3 D

−2
j1
D2
j2Dj3 + · · ·

+mjm D
−(m−1)
j1

Dm−1
j2

Dj3 − (n+ 1)D2
j1

)
YG

[m]
n (j1, j2, j3, · · · , jm) = 0. (27)

(
(j1 −

1

2
)Djm +

n∑
k=1

Gk
k!
D
−(k−1)
j1

Dk−1
j2

Djm + 2j2 D
−1
j1
Dj2Djm + 3j3 D

−2
j1
D2
j2Djm + · · ·

+mjm D
−(m−1)
j1

Dm−1
j3

Djm − (n+ 1)Dm−1
j1

)
YG

[m]
n (j1, j2, j3, · · · , jm) = 0. (28)

(
(j1 −

1

2
)Dj2 +

n∑
k=1

Gk
k!
D
−2(k−1)
j1

Dk−1
j3

Dj2 + 2j2D
−2
j1
Dj3Dj2 + 3j3 D

−4
j1
D2
j3Dj2 + · · ·

+mjm D
−2(m−1)
j1

Dm−1
j3

Dj2 − (n+ 1)Dj1

)
YG

[m]
n (j1, j2, j3, · · · , jm) = 0. (29)

(
(j1 −

1

2
)Dj3 +

n∑
k=1

Gk
k!
D
−2(k−1)
j1

Dkj3 + 2j2D
−2
j1
D2
j3 + 3j3 D

−4
j1
D3
j3 + · · ·
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+mjm D
−2(m−1)
j1

Dmj3 − (n+ 1)D2
j1

)
YG

[m]
n (j1, j2, j3, · · · , jm) = 0. (30)

(
(j1 −

1

2
)Djm +

n∑
k=1

Gk
k!
D
−2(k−1)
j1

Dk−1
j3

Djm + 2j2D
−2
j1
Dj3Djm + 3j3 D

−4
j1
D2
j3Djm + · · ·

+mjm D
−2(m−1)
j1

Dm−1
j3

Djm − (n+ 1)Dm−1
j1

)
YG

[m]
n (j1, j2, j3, · · · , jm) = 0. (31)

...
...

...

(
(j1 −

1

2
)Dj2 +

n∑
k=1

Gk
k!
D
−(k−1)2

j1
Dk−1
jm

Dj2 + 2j2D
−(m−1)
j1

DjmDj2 + 3j3 D
−2(m−1)
j1

D2
jmDj2 + · · ·

+mjm D
−(m−1)2

j1
Dm−1
jm

Dj2 − (n+ 1)Dj1

)
YG

[m]
n (j1, j2, j3, · · · , jm) = 0. (32)

(
(j1 −

1

2
)Dj3 +

n∑
k=1

Gk
k!
D
−(k−1)2

j1
Dk−1
jm

Dj3 + 2j2D
−(m−1)
j1

DjmDj3 + 3j3 D
−2(m−1)
j1

D2
jmDj3 + · · ·

+mjm D
−(m−1)2

j1
Dm−1
jm

Dj3 − (n+ 1)D2
j1

)
YG

[m]
n (j1, j2, j3, · · · , jm) = 0. (33)

(
(j1 −

1

2
)Djm +

n∑
k=1

Gk
k!
D
−(k−1)2

j1
Dkjm + 2j2D

−(m−1)
j1

D2
jm + 3j3 D

−2(m−1)
j1

D3
jm + · · ·

+mjm D
−(m−1)2

j1
Dmjm − (n+ 1)Dm−1

j1

)
YG

[m]
n (j1, j2, j3, · · · , jm) = 0. (34)

Proof. Utilizing the expression

£−
n+1 £+

n
{YG[m]

n (j1, j2, j3, · · · , jm)} = YG
[m]
n (j1, j2, j3, · · · , jm). (35)

By substituting expressions (8) and (12) into the factorization relation (35), we establish the validity of
Assertion (26).

By utilizing the expressions (9) and (12) in the factorization relation (34), we establish the validity of
Assertion (27).

By employing the expressions (10) and (12) in the factorization relation (34), we verify the validity of
Assertion (28).

Using expressions (8), (9), and (10) along with expression (13), we can separately prove assertions (29),
(30), and (31).
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By utilizing expressions (8), (9), and (10) in conjunction with expression (14), we can independently
demonstrate the validity of assertions (32), (33), and (34). �

Theorem 5. The MVHGP YG
[m]
n (j1, j2, j3, · · · , jm) satisfy the following partial differential equations:(

(j1 −
1

2
)Dnj1Dj2 +

n∑
k=1

Gk
k!
Dn−k+1
j1

Dkj2 + 2j2 D
n−1
j1

D2
j2 + 3j3 D

n−2
j1

D3
j2 + · · ·

+mjm D
n−(m−1)
j1

Dmj2 − (n+ 1)Dn+1
j1

)
× YG[m]

n (j1, j2, j3, · · · , jm) = 0. (36)

(
(j1 −

1

2
)Dnj1Dj3 +

n∑
k=1

Gk
k!
Dn−k+1
j1

Dk−1
j2

Dj3 + 2j2 D
n−1
j1

Dj2Dj3 + 3j3 D
n−2
j1

D2
j2Dj3 + · · ·

+mjm D
n−(m−1)
j1

Dm−1
j2

Dj3 − (n+ 1)Dn+2
j1

)
YG

[m]
n (j1, j2, j3, · · · , jm) = 0. (37)

(
(j1 −

1

2
)D2n

j1 Djm +
n∑
k=1

Gk
k!
D2n−k+1
j1

Dk−1
j2

Djm + 2j2 D
2n−1
j1

Dj2Djm + 3j3 D
2n−2
j1

D2
j2Djm + · · ·

+mjm D
2n−(m−1)
j1

Dm−1
j3

Djm − (n+ 1)D2n+m−1
j1

)
YG

[m]
n (j1, j2, j3, · · · , jm) = 0. (38)

(
(j1 −

1

2
)D2n+2

j1
Dj2 +

n∑
k=1

Gk
k!
D2n−2k+2
j1

Dk−1
j3

Dj2 + 2j2D
2n
j1 Dj3Dj2 + 3j3 D

2n−2
j1

D2
j3Dj2 + · · ·

+mjm D2n−2m
j1

Dm−1
j3

Dj2 − (n+ 1)D2n+m−1j1

)
YG

[m]
n (j1, j2, j3, · · · , jm) = 0. (39)

(
(j1 −

1

2
)D2n+2

j1
Dj3 +

n∑
k=1

Gk
k!
D2n−2k+2
j1

Dkj3 + 2j2D
2n
j1 D

2
j3 + 3j3 D

2n−2
j1

D3
j3 + · · ·

+mjm D2n−2m
j1

Dmj3 − (n+ 1)D2n+4
j1

)
YG

[m]
n (j1, j2, j3, · · · , jm) = 0.

(
(j1 −

1

2
)D2n+2

j1
Djm +

n∑
k=1

Gk
k!
D2n−2k+2
j1

Dk−1
j3

Djm + 2j2D
2n
j1 Dj3Djm + 3j3 D

2n−2
j1

D2
j3Djm + · · ·

+mjm D2n−2m
j1

Dm−1
j3

Djm − (n+ 1)D2n+m+1
j1

)
YG

[m]
n (j1, j2, j3, · · · , jm) = 0. (40)

...
...

...

(
(j1 −

1

2
)Dn

2+1
j1

Dj2 +
n∑
k=1

Gk
k!
Dn

2−k2+2k
j1

Dk−1
jm

Dj2 + 2j2D
n2−m
j1

DjmDj2 + 3j3 D
n2−2m−1
j1

D2
jmDj2 + · · ·
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+mjm Dn
2−m2+2m
j1

Dm−1
jm

Dj2 − (n+ 1)Dn
2+2
j1

)
YG

[m]
n (j1, j2, j3, · · · , jm) = 0.

(41)

(
(j1 −

1

2
)Dn

2+1
j1

Dj3 +
n∑
k=1

Gk
k!
Dn

2−k2+2k
j1

Dk−1
jm

Dj3 + 2j2D
2n−m
j1

DjmDj3 + 3j3 D
2n−2m
j1

D2
jmDj3 + · · ·

+mjm Dn
2−m2+2m
j1

Dm−1
jm

Dj3 − (n+ 1)Dn
2+2
j1

)
YG

[m]
n (j1, j2, j3, · · · , jm) = 0.

(42)

(
(j1 −

1

2
)Dn

2+2
j1

Djm +
n∑
k=1

Gk
k!
Dn

2−k2+2k
j1

Dkjm + 2j2D
n2−m
j1

D2
jm + 3j3 D

n2−2(m−1)
j1

D3
jm + · · ·

+mjm Dn
2−m2+2m
j1

Dmjm − (n+ 1)Dn
2+m+1
j1

)
YG

[m]
n (j1, j2, j3, · · · , jm) = 0. (43)

Proof. Taking derivatives of integro-differential expressions (26) and (27) partially n times w.r.t. j1, asser-
tion (36) and (37) are proved.

Also, Taking derivatives of integrodifferential expressions (28) partially 2n times w.r.t. j1, assertion
(38) is proved.

Further, taking derivatives of integro-differential expressions (29) - (31) partially 2n+ 2 times w.r.t. j1,
assertion (39) - (40) are proved.

Furthermore, taking derivatives of integro-differential expressions (32) and (33) partially n2 + 1 times
w.r.t. j1, assertion (41) and (42) are proved.

Again, taking derivatives of integrodifferential expressions (34) partially n2 +2 times w.r.t. j1, assertion
(43) is proved. �

4. Conclusion

This study introduces a novel family of hybrid multivariable polynomials obtained by convolving Hermite
and Genocchi polynomials, and thoroughly investigates their properties. Specifically, we derive a recurrence
relation and a sequence of shift operators satisfied by these multivariable Hermite-Genocchi polynomials.
Furthermore, we establish that these polynomials satisfy a differential equation as well as a sequence of
integro-differential and partial differential equations. Overall, by proposing this new family of polynomials
and examining their characteristics, this paper contributes to the field of polynomial theory.

Moreover, future research and observations could lead to the exploration of new characteristics of these
polynomials. This could involve the development of extended and generalized forms, symmetric identities,
and the utilization of fractional operators. However, challenges may arise when dealing with determinant
forms and summation equations with new datasets.
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