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Abstract

The purpose of this paper is to introduce and study a new subclass ρτκλs,Σ(α, P (z)) of the class Σ of bi-
univalent functions defined in the unit disk, called λ-bi-pseudo-starlike, with respect to symmetric points
associated with conic region impacted by Janowski functions. Further we determine the Fekete-Szegö result
for the function class.
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1. Introduction and Motivation

Let A denote the class of functions of the form

f (z) = z +
∞∑
n=2

an z
n, (1)

analytic in the open unit disk U . Also we let S denote the class of all function in A which are univalent in
U . It is well known that every function f ∈ S has a function f−1, defined by

f−1[f(z)] = z ; (z ∈ U)

and

f [f−1(w)] = w ; ( |w| < r0(f) ; r0f ≥
1

4
).

In fact, the inverse function f−1 is given by

f−1(w) = w − a2w
2 + (2a2w

2 − a3)w3 − (5a3
2 − 5a2a3 + a4)w4 + · · · .

A function f ∈ A is said to be biunivalent in U if both f(z) and f−1(z) are univalent in U . Let f and g
be analytic in the open unit disk U . The function f is subordinate to g written as f ≺ g in U , if there exist
a function w analytic in U with w (0) = 0 and |w(z)| < 1; (z ∈ U) such that f(z) = g(w(z)), (z ∈ U).
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Using the concept of subordination for holomorphic functions, Ma and Minda [1] introduced the classes

S∗(ψ) =

{
f ∈ A : Re

(
z f ′ (z)

f (z)

)
≺ ψ(z)

}
and

C(ψ) =

{
f ∈ A : Re

(
1 +

z f ′′ (z)

f (z)

)
≺ ψ(z)

}
.

where ψ ∈ ℘ with ψ, > 0 maps U onto a region starlike with respect to 1 and symmetric with respect to
real axis. By choosing ψ to map unit disc on to some specific regions like parabolas, cardioid, lemniscate of
Bernoulli, booth lemniscate in the right-half of the complex plane, various interesting subclasses of starlike
and convex functions can be obtained.

For arbitrary fixed numbers C,D,−1 < C ≤ 1,−1 ≤ D < C , we denote ℘(C,D) by the family of
functions p(z) = 1 + p1z + p2z

2 + · · · analytic in the unit disc and p(z) ∈ ℘(C,D) if and only if

p(z) =
1 + Cw(z)

1 +Dw(z)
,

where w(z) is the Schwarz function. On observing that w(z) = p(z)−1
p(z)+1 for p(z) ∈ ℘, we have S(z) ∈ ℘(C,D)

if and only if for some p(z) ∈ ℘

S(z) =
(1 + C)p(z) + 1− C
(1 +D)p(z) + 1−D

S∗(ψ) =

{
f ∈ A : Re

(
z f ′ (z)

f (z)

)
≺ 1 + Cz

1 +Dz
,−1 ≤ D < C ≤ 1

}
and

C(ψ) =

{
f ∈ A : Re

(
1 +

z f ′′ (z)

f (z)

)
≺ 1 + Cz

1 +Dz
,−1 ≤ D < C ≤ 1,

}
.

respectively.
Motivated by aforementioned works [2, 3, 4, 5, 6, 7], in this paper we defined the following new subclass

ρτκλs,Σ(α, P (z)) named as λ-pseudo-starlike function of the class Σ of bi-univalent functions defined in the
unit disk,with respect to symmetric points associated with conic region impacted by Janowski functions.

Definition 1. [8]
For 0 ≤ α ≤ 1;λ > 0;λ 6= 1

3 a function f ∈ Σ of the form (1) is said to be in the class ρτκλs,Σ(α, P (z))
if the following subordination hold:(

2z
(
f ′(z)

)λ
f(z)− f(−z)

)α(
2
(
zf ′(z)

)λ
[f(z)− f(−z)]′

)1−α

≺ (C + 1)ψ(z)− (C − 1)

(D + 1)ψ(z)− (D − 1)

Specializing the parameter λ = 1 we have the following definitions, respectively:

Definition 2. For 0 ≤ α ≤ 1 a function f ∈ Σ of the form (1) is said to be in the class ρτκ1
s,Σ(α, P (z)) ≡

ρτκs,Σ(α, P (z)) if the following subordination hold:(
2zf ′(z)

f(z)− f(−z)

)α(
2zf ′(z)

[f(z)− f(−z)]′
)1−α

≺ (C + 1)ψ(z)− (C − 1)

(D + 1)ψ(z)− (D − 1)

Further by specializing the parameter α = 1 and α = 0 we state the following new classes
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Definition 3. A function f ∈ Σ of the form (1) is said to be in the class ρτκ1
s,Σ(1, P (z)) ≡ ρτκs,Σ(P (z))

if the following subordination hold:

2zf ′(z)

f(z)− f(−z) ≺
(C + 1)ψ(z)− (C − 1)

(D + 1)ψ(z)− (D − 1)

2. Preliminaries

In this section we state the results that would be used to establish our main results which can be found in
the standard text on univalent function theory.

Lemma 1. [9]If the function f ∈ A given by and g given by

g (w) = w +
∞∑
n=2

bk w
n

is inverse function, then the coefficients bk, for k ≥ 2, are given by

bk =
(−a)k+1

k!


ka2 1 0 · · · 0
2ka2 (K + 1)a2 2 · · · 0
3ka4 (2K + 1)a3 (K + 2)a2 · · · 0

...
...

. . .
...

(k − 1)kak [k(k − 2) + 1] ak−1 [k(k − 3) + 2] ak−2 · · · (2k − 2)a2

 (2)

Lemma 2. [10] If p(z) = 1 +
∑∞
n=1 Pk z

k ∈ ψ, then | pk |≤ 2 for k ≥ 1 and the inequality is sharp for

pλ(z) = 1+λz
1−λz , | λ |≤ 1.

Lemma 3. [1] If p(z) = 1 +
∑∞
n=1 Pk z

k ∈ ψ, and v is complex number, then

| p2 − vp2
1 |≤ 2max[1; | 2v − 1 |]

3. Main Result

Theorem 1. Let f ∈ ρτκλs,Σ(α, P (z)), is given by (1) , then for the coefficients of g = f−1 the following
estimates hold:

| b2 |≤
| L1 | (C −D)

4 | λ || α− 2 | (3)

and

| b3 |≤
| L1 | (C −D)

| 4(3λ− 1)(3− 2λ) |max [1; | 2v − 1 |] (4)

with

v :=
1

4

[
L1(D + 1) + 2

(
1− L2

L1

)
+M+N

]
(5)

where

M :=
2λ2(α− 2)2 + 2λ(3α− 4)

4λ2(α− 2)2
(6)

and

N :=
L1(C −D)(3λ− 1)(3− 2λ)

8λ2(α− 2)2
(7)
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Proof. If f ∈ ρτκλs,Σ(α, P (z)), then by the definition of subordination, there exists a function w analytic
in U with w(0) = 0 and | w(z) < 1 |, z ∈ U , such that(

2z
(
f ′(z)

)λ
f(z)− f(−z)

)α(
2
(
zf ′(z)

)λ
[f(z)− f(−z)]′

)1−α

=
(C + 1)ψ(z)− (C − 1)

(D + 1)ψ(z)− (D − 1)
, z ∈ U .

Let l ∈ ψ be of the form l(z) = 1 +
∑∞
n=1 Pk z

k and it is defiend by

l(z) =
1 + w(z)

1− w(z)
, z ∈ U

On simple computation gives

w(z) =
l(z)− 1

l(z) + 1
=

1

2
p1z1 +

1

2

(
p2 −

1

2
p2

1

)
+

1

2

(
p3 − p1p2 +

1

4
p3

1

)
z3 + · · · , z ∈ U

and considering

(C + 1)ψ(z)− (C − 1)

(D + 1)ψ(z)− (D − 1)
= 1+

L1p1(C −D)z

4
+

(C −D)L1

4

p2 − p2
1

 (D+!)L1 + 2
(

1− L2

L1

)
4

 z2 + · · · ,

we have

(
2z
(
f ′(z)

)λ
f(z)− f(−z)

)α(
2
(
zf ′(z)

)λ
[f(z)− f(−z)]′

)1−α

= 1 +
L1p1(C −D)z

4

+
(C −D)L1

4

p2 − p2
1

 (D+!)L1 + 2
(

1− L2

L1

)
4

 z2 + · · · ,

The left hand side of the above equation will be of the form

(
2z
(
f ′(z)

)λ
f(z)− f(−z)

)α(
2
(
zf ′(z)

)λ
[f(z)− f(−z)]′

)1−α

= 1− 2λ(α− 2)a2z

+
(

[2λ2(α− 2)2 + 2λ(3α− 4)]a2
2 + (3λ− 1)(3− 2α)a3

)
z2 + · · ·

= 1 +
L1p1(C −D)z

4

+
(C −D)L1

4

p2 − p2
1

 (D+!)L1 + 2
(

1− L2

L1

)
4

 z2 + · · · ,

Equating the coefficients from the power series, we obtain

a2 =
−L1p1(C −D)

8λ(α− 2)
(8)

and

a3 =
(C −D)L1

4(3λ− 1)(3− 2α)

p2 − p2
1

L1(D + 1)

4
+

(
1− L2

L1

)
2

+
[
2λ2(α− 2)2 + 2λ(3α− 4)

] (C −D)L1

16λ2(α− 2)2

 (9)

From (2) we see that b2 = −a2 and applying Lemma 2 for (8), we obtain the inequality (2). Also, from
(2) we have
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b3 =
(−1)4

3!

(
3a2 1
6a2 4a2

)
= 2a2

2 − a3

=
L2

1p
2
1(C −D)2

32λ2(α− 2)2

− (C −D)L1

4(3λ− 1)(3− 2α)

p2 − p2
1

L1(D + 1)

4
+

(
1− L2

L1

)
2

+
[
2λ2(α− 2)2 + 2λ(3α− 4)

] (C −D)L1

16λ2(α− 2)2


=

−L1(C −D)

4(3λ− 1)(3− 2λ)

[
p2 −

1

4
p2

1

(
L1(D + 1) + 2

(
1− L2

L1

)
+M+N

)]
where M and N are given by (6) and (7). Now using Lemma 2 we get (4), with v given by (5). �

4. Fekete-Szegö Inequalility for the Function of ρτκλs,Σ(α, P (z))

We will give the solution of the Fekete-Szegö problem for the functions that belong to the classes we defined
in the first section.

Theorem 2. Let f ∈ ρτκλs,Σ(α, P (z)) given by (), then for all µ ∈ C we have

| a3 − µa2
2 |≤

| L1 | (C −D)

| 4(3λ− 1)(3− 2λ) |max [1; | 2τ − 1 |]

with

τ :=
1

4

[
L1(D + 1) + 2

(
1− L2

L1

)
+M+

µN
2

]
where

M :=
2λ2(α− 2)2 + 2λ(3α− 4)

4λ2(α− 2)2

and

N :=
L1(C −D)(3λ− 1)(3− 2λ)

8λ2(α− 2)2

the inequality is sharp for µ ∈ C

Proof. If f ∈ ρτκλs,Σ(α, P (z)), in the view of relation (8) and (9), for µ ∈ C we have

| a3 − µa2
2 | =

(C −D)L1

4(3λ− 1)(3− 2α)

p2 − p2
1

L1(D + 1)

4
+

(
1− L2

L1

)
2

+
[
2λ2(α− 2)2 + 2λ(3α− 4)

] (C −D)L1

16λ2(α− 2)2

)]
− µL

2
1p

2
1(C −D)2

64λ2(α− 2)2

=
L1(C −D)

4(3λ− 1)(3− 2λ)

[
p2 −

1

4
p2

1

(
L1(D + 1) + 2

(
1− L2

L1

)
+M+

µN
2

)]
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≤ | L1 | (C −D)

4 | (3λ− 1)(3− 2λ) |

[
2− 1

4
p2

1

(∣∣∣∣L2

L1
− L1(D + 1)−M− µN

2

∣∣∣∣− 2

)]

now if
∣∣∣L2

L1
− L1(D + 1)−M− µN

2

∣∣∣ ≤ 2 in the above inequality we obtain

| a3 − µa2
2 |≤

| L1 | (C −D)

4 | (3λ− 1)(3− 2λ) | (10)

Further, If
∣∣∣L2

L1
− L1(D + 1)−M− µN

2

∣∣∣ ≥ 2 in the same inequality we obtain

| a3 − µa2
2 |≤

| L1 | (C −D)

4 | (3λ− 1)(3− 2λ) |

(∣∣∣∣L2

L1
− L1(D + 1)−M− µN

2

∣∣∣∣) (11)

An examination of the proof shows that the equality for (10) holds if p1 = 0, p2 = 2. Equivalently, by

Lemma 3 we have p(z2) = p2(z) = 1+z2

1−z2 . Therefore, the extremal function of the class ρτκλs,Σ(α, P (z)) is
given by (

2z
(
f ′(z)

)λ
f(z)− f(−z)

)α(
2
(
zf ′(z)

)λ
[f(z)− f(−z)]′

)1−α

=
(C + 1)p(z2)− (C − 1)

(D + 1)p(z2)− (D − 1)
.

Similarly, the equality for (11) holds if p2 = 2. Equivalently, by Lemma 3 we have p(z) = p1(z) = 1+z
1−z .

Therefore, the extremal function of the class ρτκλs,Σ(α, P (z)) is given by(
2z
(
f ′(z)

)λ
f(z)− f(−z)

)α(
2
(
zf ′(z)

)λ
[f(z)− f(−z)]′

)1−α

=
(C + 1)p1(z)− (C − 1)

(D + 1)p1(z)− (D − 1)
.

and the proof of the theorem is complete. �

5. Conclusion

We unify and extend various classes of analytic function by defining λ-pseudo starlike function using
subordination. Also several results which are closely related to the results presented here, refer to [11, 12]
and references provided therein.
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