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Abstract

This work explores coefficient estimates for analytic functions in a symmetric domain. Building on recent
studies that use polynomials such as Lucas and Legendre polynomials to bound the Maclaurin coefficients
|az| and |as|, we turn to Gegenbauer polynomials. By applying the imaginary error function and subor-
dination techniques, we derive sharp bounds for |az| and |a3| and the Fekete-Szegd functional for two
extensive new subclasses. Our general theorems also yield several novel special cases, demonstrating the
breadth of our results.
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1. Introduction

The investigation of bi-univalent functions via error functions integrates advanced mathematical tech-
niques, error assessment, and approximation with complex analysis, particularly function theory.
Bi-univalent functions refer to subclasses of univalent functions that exhibit analyticity within a speci-
fic domain. The application of error functions to bi-univalent functions is driven by the convergence of
classical function theory, numerical analysis, and practical implications in engineering and physics. Leve-
raging error functions enhances our understanding of bi-univalent functions by providing more precise
descriptions, tighter bounds, and improved approximations. Furthermore, the error function has diverse
applications in probability theory, statistical analysis, and partial differential equations. Notably, in quan-
tum mechanics, the error function plays a vital role in estimating the probability of locating a particle
within a defined region. Previous studies, such as those by Alzer [1] and Coman [2], have explored the vari-
ous properties and inequalities of the error function, while Elbert et al. [3] have examined the characteristics
of the complementary error function.
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Let A denote the family of analytic and univalent functions f in the symmetric domain U = {z € C :
|z| < 1} and satisfying f(0) = f(0) — 1 = 0 of the form

z) :z+2akzk. (1)
k=2
Every function f € A has an inverse f~! defined by

(@) =z w= [T (W), (zeUluw| <ro(f) > ),

»M»—'

where

fHw) = H(w) = w — asw® 4 (243 — az)w® — (as + bas — bazaz)w® + - - - . (2)

Let X be the family of bi-univalent functions in U given by (1) (i.e., f is bi-univalent in U if both f and
! are univalent in U); see [5]. The function f is subordinate to H, denoted by f < H, if there exists a
function w € A such that both f and H are analytic in U and

w(0) =0, lw(z)| <1, (z€U)

such that

Abramowitz and Stegun [6] defined the following error function:

k 2k+1

erf (= f/ —dt = \FZ %Hk', (2 €C). (3)

Further, we define the imaginary error function, denoted by erfi, as follows:

2 e 2]€+l
erfi(z \/>/e dt = Tz:: GhE DR’ (z € C). (4)
Since the error function is odd, i.e., erf(—z) = —erf(z), it is symmetric with respect to the origin. The

generalized form of (3) can be written as:

|
erf (2) = K[ e dt, peNo=NU{0}
e ﬁo/
S pk+1
- %Z ulc-l—zlk" (z€C). )

k=0

From (5), we have erf,(z) = %ﬁ, erf,(z) = %, erfo(z) = erf(z). Clearly, the function erf ,(z) does
not belong to the family .A. Now we consider the following function:
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)kfl

- z+z u—i—l)(k 1)!zk, (neN,zeC). (6)

Also, the imaginary error function (4) is generalized as follows:

Z,uk+1
erfiu(z \F/ “at = Z (kT DR (1 € Np,z €C). (7
Further, the normalization of the generalized imaginary error function erfi,(z) is given by

E.(z) = ﬁz(l_i)erfiu (zi)

!

3 1
) Z+kz=:2((k—1)ﬂ+1)(k_1)1zkv (nEN,z€C). )

Making use of the convolution, we construct the linear operator Ef,, (z) : A — A given by

Bfu(:) = ()% Bu(:) =243 o (9)

Remark 1. If we take g = 2 in (6), we obtain the normalization for Ramachandran et al. [7], and if we
take p = 2 in (8), we obtain the normalization for Mohammed et al. [8].

The problem of estimating the coefficient for each of |an| (n > 3;n € N) is presumably still an open
problem. Brannan and Taha [4] presented the subclasses of the class of bi-univalent functions ¥, namely
S5 (a) and Kx(«) of bi-starlike and bi-convex functions of order o (0 < v < 1), and the first two coefficients
were estimated. These results are similar to the well-known subclasses S*(«) and K («) of starlike and
convex functions of order a (0 < o < 1). Additional examples and details related to the class X can be
found in references [5, 6, 7, 8].

Orthogonal polynomials have been widely studied since their discovery by Legendre in 1784 [9]. They
have been used as a mathematical approach to solve ordinary differential equations associated with model
problems under certain conditions. The advantages of orthogonal polynomials in modern mathematics and
their application in physics and engineering cannot be ignored. In mathematics, orthogonal polynomials
play a key role in approximation theory, differential and integral equations, and mathematical statistics.
Additionally, these polynomials have been instrumental in various applications, such as scattering theory,
quantum mechanics, signal analysis, automatic control, and axially symmetric potential theory [10, 11].

Amourah et al. [12] investigated Gegenbauer polynomials, whose generating function He(z, 2) is given
by

1

Hal:?) = g v oy

(10)
where —1 <z < 1and z € U. Also, since H, is analytic in U, it can be written in a power series expansion
as follows:

where Cy (z) is a Gegenbauer polynomial of degree n. The Gegenbauer polynomials generate Legendre
polynomials and Chebyshev polynomials when setting « as 1/2 and 1, respectively, and they can also be
defined by the following recurrence relations:
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Loz (n+a—1)0% (@) = (n+ 20— 2)C%_, ()],

n

Cr (x)

with the initial values:

o (x) = 1,
CT (z) = 2ax,
Cs(z) = 20(14a)z® —a. (11)

In this work, we construct two new and extensive subfamilies of bi-univalent functions using a particular
special function, the imaginary error function and Gegenbauer polynomials, denoted by G%((,€,x) and
T¥ (¢, ), and find initial bounds for the coefficients |az| and |as|, as well as the Fekete-Szegd inequality.
Also, a number of new corollaries are presented.

2. Bounds of the Subfamilies G§((, ¢, z) and 79 (¢, )
At the beginning of this section, we define the comprehensive subfamilies G%,(, €, z) and 75 (p, z) using

an error function subordinate to Gegenbauer polynomials.

Definition 1. For f € G$((, €, ), assume that the following subordinations are satisfied:

Ef.(2)

—— + (Bfu (2) + €2 (Bfu (2))" < Ha(z, 2), (12)

(1-9

(1-9

whereczl,ezo,%<x<1,z,w€U,andH:f’l.

BB o ¢ Bty () + ew (B, (0))" < Hal,w), (13)

Definition 2. For f € T¥ (¢, z), assume that the following subordinations are satisfied:

e +1

5 (Efu (2))" < Ha(z, 2), (14)

(Efu(2) +2

e +1

(EHy (w)) +w (EHu (w))" < Ha(z,w), (15)

where—w<<p§7r,%<x§1,z,w€U,andH:f’1.

Example 1. If we put ¢ = 1 in Definition 1, we obtain the subfamily G%(1,¢,z), which satisfies the
following requirements:

(Efu(2) + ez (Bfu(2)" < Ha(z, 2),

(EHp (w))' + ew (BH, ()" < Ha(z, w),
whereezo,%<x§1,z,w€U, and H = f~1.

Example 2. If ¢ = 0 in Definition 1, we obtain the subfamily G%(¢,0,z), which satisfies the following
requirements:

1-0 B (1, )Y < Hala,2)
(-0 P 4 ¢ (BH, () < Ha(r, ),

whereczl,%<x§1,z,w€U,andH:f’l.



Comprehensive Subfamilies of Bi-Univalent Functions | 111

Example 3. If ¢ = 7 in Definition 2, we obtain the subfamily 7% (m,z), which satisfies the following
requirements:

(Efu(2)) < Ha(z,2)

and

(EH, (w))' < Ha(w,w),
where % <x<1,z,weU,and H=f"1

Example 4. If ¢ = 0 in Definition 2, we obtain the subfamily 7% (0,z), which satisfies the following
requirements:

(Efu(2)" +2(Efu(2))" < Ha(z, 2),

(BH,, (w))’ +w (EH, (w))" < Hal(x,w),
where % <x<1,z,weU,and H=f"1.
Remark 2. All the previous subfamilies mentioned are inspired by the subfamilies used by many rese-

archers when Re(f'(z)) > «. From this, we can determine Re(f’(z)) > 0, which is the condition for the
function f to be univalent on the open disk U.

Lemma 1. ([13]). Let X (2) € F be given by

X(z)=14miz+m2z®+mzz® +---, (Re(X(2))>0,z€U).

Then
|mn| <2

for each n € N.

In the next theorem, we estimate the initial coefficients |az| and |as| and solve the Fekete-Szegd problems
for the subfamilies G;({, €, z) and Tx (¢, x), respectively.

3. Main Results
We begin by estimating the upper bound of the coefficients for the functions belonging to class f € Rq(h).

Theorem 1. Let f € ¥ be given by (1) in the subfamily G%((,€,x), where ( > 1, € > 0, % <z <1,
z,weU, and H= f~1. Then

laz| < v/ D(e, ¢, ),

4022% (n+1)?  dax (2u+1)

sl < e r 1 Y Geracr 1)
and
Sax(2u+ 1) o dax(2p+1)
‘ 9 2) _ Getr2c 1)’ if (1=0)D(e, ¢, w) < Geroctl)
a3 —vaz| =~
2= 0)D(e.Ca). i (1= 0)D(e.a) > PR
where

8oz (20 4 1) (1 + 1)?

DleCm) = e s D (i kD a?e? — e+ ¢+ 1220 + D @a(l + a)a? — (1 T 2a)2)
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Proof. Since f(z) =z + i arz® € G%(¢, e, x), from (12) and (13), we have
k=2

+C(Efu(2)) + ez (Bfu (2))" < Ha(z, 2)

(-

and

EH, (w)

(1-9 +C(BHy (w) + ew (EHu (w)” < Ha(z, w).

(17)

We define the functions si,s2 : U — U with s1(0) = s2(0) = 0 and |s1(2)| < 1, |s2(w)| < 1 forall z,w € U.

So we can define p,o € F as

1
p(z):m:1+p1z+p2z2+p323+~~, lok] <2, zelU.
1—s1(2)
Then
_ M=o (e g 2 1 LANCI
si(z) = p(z)+1_22+ 5 1 2+2 p3 p1p2+4 z" + .
Similarly,
a(w):M:1+Ulw+agw2+agw3+-u, lok| <2, weU,
1 — s2(w)
and
_ow)—-1 o1 oo o3 5 1 o3 3
s2(w) = cr(w)+1_2w+(2 1 )V T \ms oot Jun

Holasi() = CF () +CF () 2z (Of“ (x) (%2 - é)
+C5 (x) %%) 22+ (%C? (z) <p3 —pip2 + %§>

3 3
405 0) (22 - B+ os @ ) e,

and similarly,

H, (z,s2(w)) = CF (z)+CY (2) St <Cf¥ (z) (? - ;)

2 3
+C5 () %) w? + (%Cf‘ (z) (0’3 — o102 + %)

+cg(m)( 5 —£)+C§(m)§)w3+m.

From (16), (17), (20), and (21), we have
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2e+§+1a _ CY (2)
L+l P72

P1,

6e+20+1 o (p2 P} o PT
2(2M+1)a3_01($)<2 1) T @
_2e—|—(—|—1a_Cf’($)

nt+1 2T 2

a1,

and

6e+2¢C+1 2 o o2 o} o 01
WTOT (902 _qg) = 2 _a iy
e (k) =0t @) (G- ) @)

Upon adding (22) and (24), we obtain

p1 = —01
and )
8(2e +(+1)° o a N2/ 2 2
Ty ST e
Therefore,
2 CE @ )+ )

4(2¢ + ¢+ 1)2
Adding (23) and (25), we get

wag = 2CT (z) (p2 + 02) + (P% + U%) (C3 (z) = CF (x)).-

(2u+1)
Using (26),

LT =207 (@) (2 + o0) + 20 (G5 (0) — OF (@),
Hence,

% = OF (2) (p2 +02) + 7 (C5 (2) = CF ().

From (26) and (27), we obtain

g 4(2¢+¢+1)%a3
1 = .
C (2)? (u+1)?

By replacing (30) in (29), we obtain the following result:

Cf (2)° (p2 + 02) (2u + 1) (p+ 1)

2
ag =

Applying (11) and Lemma 1, we obtain

C2[(6e+2¢+ 1) (u+ 1) OF ()2 — 2(2¢ + ¢ + 1)2(2u + 1)(CF (z) — OF (z))]

8a3z3(2p +1)(n +1)2

jaz] < \/2(66 +2C+1)(p+1)a2x?2 — (2 + ¢+ 1)22u+ 1)(2a(1 + a)xz? — (1 + 2a)x)

| 113

(26)

(27)

(28)

(29)

= \% D(€7 C’ x)7
where
D( ) = 8alx3(2u 4+ 1) (p +1)2
€62) = 2(6e +2¢+1) (p+1)a2x? — (2e + ¢+ 1)2(2u + 1)(2a(1 + a)z? — (1 + 2a)z)
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Subtracting (25) from (23) and considering (26), we obtain

_ 2 O (2)(p2—02)(2u+1)
a3 = az + 2(6e +2¢ + 1)

Substituting the value of a3 from (28) and using (26), we have

we = CT @i+ 1)? | CF (2) (p2 —02) (2u+ 1)
2T T ARe+ ¢+ 1)2 2(6e +2¢ + 1) '

Applying (11) and Lemma 1, we obtain

Cf (2)% |pt] (1 + 1)

Ot (z) (|p2| + |o2|) (2p + 1)

<
sl < ey F 2(6e +2C + 1)
Thus,
las| < 4023 (n+1)%  dax(2u+1)
=2+ c+ 12 T (6et+20+ 1)
From (31), we have
as — eag — Ci (:L') (,02 - 02) (Q:U’ + 1) + (1 _ 0) ag.

2(6e + 2C + 1)
Using (11) after the triangular inequality, we arrive at
o — 0] < L@ onl +loa) @+ )
2(6e +2¢+1)

dox(2p+ 1)
= (6e+2C+1)

+1(1-6)]|a3]

+(1-0)D (¢, x).

Now, if
dox(2p + 1)
(1-0)D (e x) < m»

then 80z(2 3
_pa| < Sazlint 1)
‘a3 Qaz‘ = (6e+2C+1)
And if so(2 0
ax(2p +
(1-0)D (e ¢ ) > m»

then we have
‘ag —Oag’ <2(1-0)D (¢ x).

Hence proved. [

Theorem 2. Let f € X be given by (1) in the subfamily Tx (¢, ), where —m < ¢ < m, € > 0, % <z <1,
z,w€e€U, and H= f~1. Then

|a2| < \/Y(<P7I)7
las| < 4022% (p+1)? | dox(2u+1)
RN S G
and 8az (2 + 1) daz(2u+ 1)
ax(2u + . ax(2u +
2
’ag — 0a2‘ <
) dox(2p + 1)
_ _ > xarep T L)
21-0)Y (p,z), if 1=-0)Y (p,z)> 3(eie 12)
where

2(2u+1) (u+1)% a®a®

Vipo) =g [a222(e% 1+ 2) (u+ 1) — (e% 1 3) (20 + 1) 2a(1 + a)z? — (1 + 2a)z)]
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Proof. Since f(2) = 2+ 3. arz® € TS(p,z), from (14), (15), (20), and (21), we can write
k=2

(Ehu () + 25 (B (2) < Hala,2) (32)
and
(EH, () + 0L (BH, ()" < Ha(z, w). (33)

From (32) and (33) and the functions Hq(z,2) and Ha(z,w), respectively, which are given by (20) and
(21), we have

e +3 CY(x)

(,u T 1) a2 = 2 P1, (34)
3 (e* + 2 o 2 o 2
2((T+1))03 =C7 () <p52 - %) +C3 (z) %: (35)
e +3 C¥(x
PESY as = 12( )01, (36)
and

3 (e +2 o 1% o3 o o3

m@ag —a3) = CY (z) (32 - f) +C% (x) Zl' (37)

We obtain the findings provided by Theorem 2 using the same method to prove Theorem 1. [

3.1. Set of corollaries
Corollary 1. Let f € G%(1,¢,z), where e >0, 3 <z <1, z2,w € U. Then

laz| < D (e 1,x),

2% (p+1)2  dox(2u+1)

<
|a3| s (6+1)2 3(2€+1) )
and
Sax (21 + 1) . dox(2p+ 1)
—_— f(1-=0)D (e, 1 —_—
3(2e+1) A =0D (e L) < =55
2
‘ag — 0(12’ <
. dox(2p+ 1)
2(1 —=0)D (e, 1 f(1—-0)D (e 1 > —
(1=0)D (e 1a). i (1-0)D (e La) > EHL,
where

o2 (2u+1) (p+ 1)

D& o) = s T (1 a%a? — 20 + 1225 + D)(2a(l + a)a? — (1 1 20)2)"
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Corollary 2. Let f € G%(¢,0,x), where ¢ > 1, % <z <1, z,weU. Then
laz| < /D (0,¢, ),

4022% (u+1)?  dazx (2u+1)

las| <

(C+1)? (2¢+1) 7
and
el - 0pe.Ge) < G,
21— 0)D(0,¢,x), if (1—0)D(0,(,z) > %
where

o®2® (2u+1) (u+1)°

DOCD) = e ) (v D o2 = (€ 2@ + D(2a(l + @) = (1 20)2)”

Corollary 3. Let f € T (m,z), where % <z <1, z,weU. Then

|a’2| < \% Y(Tl',.’L'),
las| < a22? (N+1)2+%,
and
80(3)(2;4— 1)7 £0<(1-0)Y (m2) < 40433(2;—1— 1)7
‘ag—@a%’ <
2(1—0)Y (m,2), if (1—0)Y (m,2)> %,
where

202u+1) (p+1)?a32®

V) = 31 (i D) - 4@u+ 1) @a(l + a)a? — (1 + 20)2)]

Corollary 4. Let f € Tx (0,z), where % <z <1, z,weU. Then

laz| < /Y (0, z),
2, 2 2
las| < a‘z® (u+1) +40¢9ﬂ(2,u+1)7
4 9

and

8aav(29u—|—1)7 ifOS(lfG)Y(O,x)<4ax(2éu+1),

’ag—@a%’ <

2(1-0)Y (0,2), if (1—0)Y (0,2) > %,

where

202u+1) (n+1)?a2®

Y00) = 3 B0 i+ D — 16 @+ D) Gall + a)a? — (1 + 20)2)]
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4. Conclusion

Many researchers have recently worked on special functions since they are used in so many different
mathematical and scientific fields. This study has successfully introduced new subfamilies of analytic
functions by leveraging error functions subordinate to Gegenbauer polynomials. By establishing initial
bounds for the coefficients a2 and a3 and deriving the Fekete-Szeg6 inequality, our research contributes
significantly to the understanding of these functions. By applying the linear operator E f,, to Gegenbauer
polynomials, we have gained novel insights into analytic functions within the open unit disk U. This
work bridges theoretical mathematics and practical science, with applications in multiple fields. Looking
ahead, potential avenues for investigation include exploring bounds for higher-order coefficients, delving
into applications within physics and engineering, and extending the framework to encompass other special
functions or polynomials.
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