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Abstract

The present study focuses on the numerical solution of the Rosenau-Hyman (R-H) equation, also known
as the generalized Korteweg—de Vries equation, which describes the dynamics of shallow water waves and
pattern formation in liquid drops. To this end, a collocation finite element method based on septic B-
spline approximation is proposed and applied to the R-H equation for different parameter values of the
test problem. In addition, a von Neumann stability analysis is performed, demonstrating that the proposed
scheme is unconditionally stable. The efficiency and reliability of the method are illustrated by solving
a test problem and computing the Lo and Loo error norms. The numerical results are found to be in
very good agreement with the corresponding analytical solutions, indicating that the proposed B-spline
collocation algorithm is both accurate and robust. To further demonstrate the effectiveness of the method
in solving nonlinear equations, the results are presented graphically as well as in tabular form. The close
consistency between analytical and numerical results suggests that the proposed approach is a powerful
and attractive tool for investigating characteristic features of nonlinear phenomena in various fields of
science.
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1. Introduction

The theory of nonlinear phenomena is known as one of the most critical fields of scientific research. In
recent years, researchers have extensively discussed various mathematical models such as the KdV equation

Ui +aUU; + bUzwz - O: (1)

which has been used as a model for unidirectional, long, dispersive waves [1, 2], the RLW (Regularized
Long Wave) equation
Ui + Uz +aUUy — bUygqt = 07 (2)

that has been analyzed widely by Benjamin et al. [3] and others [4]-[16], and the Rosenau equation
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which was introduced to describe the dynamics of dense discrete systems [17]. Although Eq. (1) has a
wide range of application areas, it also has several shortcomings [18, 19]. To overcome these shortcomings
of Eq. (1), Eq. (3) was proposed by Philip Rosenau in 1988 [20]. The existence and uniqueness of Eq. (3)
were demonstrated by Park [21, 22] and Barreto et al. [23]. Besides theoretical investigations, numerical
analyses of Eq. (3) also exist in the literature; see [24]-[28] and the references therein.

As is well known, Eq. (1), which was discovered to identify water wave motion in channels, is a significant
nonlinear partial differential equation (NLPDE) possessing soliton solutions. Similarly, other PDEs related
to fluid mechanics and plasma physics phenomena also admit soliton solutions [29]. Compactons are
traveling wave solutions with compact support, resulting from a balance between nonlinearity and nonlinear
dispersion. These solutions were first observed in a generalized KdV equation with nonlinear dispersion,
known as the K(p,p) compacton equation of Rosenau and Hyman [30], given by

Ut — CoUm + O'(Up)m + M(Up)mzx = 07 (4)

where c¢g is a constant velocity introduced to stop the compacton when necessary. Compactons also preserve
their shape after collisions [31]. Equation (4) has been explored as a simplified model for studying the role
of nonlinear dispersion in pattern formation in liquid drops [32], and compactons have various applications
in physics and science [33]-[36].

Numerical approaches indicate that an initial pulse wider than a compacton separates into a set of
compactons accompanied by a small amount of radiation. Moreover, compactons collide elastically, suf-
fering only a phase shift after the collision and producing zero-mass, small-amplitude compact ripples
[37, 38, 39, 40, 41]. Numerical solutions of Eq. (4) are relatively limited in the literature. The most widely
used numerical techniques are pseudospectral methods in space [30, 42]. Finite element methods based on
cubic B-splines [37], methods based on piecewise polynomials discontinuous at the element interfaces [43],
high-order Padé methods [38], second-order finite difference methods [44], and the method of lines with
adaptive mesh refinement [45] have also been applied successfully. These studies motivate us to analyze the
R-H equation and further investigate its numerical properties. Several other numerical methods [46]-[55]
have been implemented to solve fractional models of this type of equation.

In order to obtain numerical solutions for real-life problems arising in different fields of science, it is
crucial to choose an efficient and reliable numerical approach. The Finite Element Method (FEM), which
is one of the most effective techniques for solving boundary-value problems in approximation theory,
is particularly noteworthy. In this study, a B-spline-based collocation method has been chosen as the
interpolation framework due to its computational efficiency and ease of implementation. Motivated by these
advantages, a reliable and efficient numerical scheme is implemented to obtain new numerical solutions of
the equation.

The remainder of the paper is organized as follows. In Section 2, the B-spline basis functions are introduced,
and the proposed numerical scheme is formulated and applied to the governing equation. The stability
analysis of the numerical method is presented in Section 3. In Section 4, a fully discrete algorithm is
constructed and its convergence properties are briefly discussed. In Section 5, a test problem taken from
the literature is solved, and the corresponding numerical results are presented in both tabular and graphical
forms. Finally, concluding remarks are given in the last section.

2. Numerical Calculations

In this section, Eq. (4) is solved using the septic B-spline collocation method. The septic B-spline functions
¢m(x), m = —3(3)N, defined at the nodes z,, over the solution interval [a,b], are constructed following
the approach presented in [57]. Among various numerical techniques, the collocation method is well known
for improving numerical accuracy due to its advantageous properties.

In the collocation method, the numerical approximation Upumeric(, t) corresponding to the exact solution

Uegact(x,t) is expressed as a linear combination of septic B-spline interpolation functions as

N—+3

Unumeric(x,t): Z ¢m(x)pm(t) (5)

m=—3
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When the transformation hp = © —xpm, (0 < p < 1) is applied over the finite region [Zm, Tm+1], this region
is mapped onto the interval [0, 1]. Consequently, the septic B-spline functions defined on the new region
[0, 1] are obtained as follows:

bm-3 = 1—Tp+21p> —35p> +35p* —21p° +7p° — p’,
Gm_2 = 120 —392p + 504p? — 280p° + 84p° — 42p° + 7",
m—1 = 1191 —1715p 4 315p° + 665p° — 315p" — 105p° 4 105p° — 21p",
bm = 2416 — 1680p + 560p* — 140p° + 35", (6)
dmi1 = 1191+ 1715p + 315p% — 665p° — 315p" + 105p° + 105p° — 3507,
bmir2 = 120+ 392p + 504p> + 280p° — 84p° — 42p° + 21p”,
bmisz = 14+Tp+21p> +35p° +35p* +21p° +7p° — o7,
Gmta p7-

Using the equalities given by (5) and (7), following expressions are obtained:

UN(II’m,t) - Um = Pm-3 + 120pm72 + 1191pm71 + 2416pm + 1191pm+1 + 120pm+2 + Pm+3,
7
A— W (—pm—3 — 56pm—2 — 245pm—1 + 245pm+1 + 56pm+2 + pm+3)
42
Un = 75 (om-3+24pm—2 +15pm—1 = 80pm + 15pm41 + 24pm+2 + pmts) (7)
U - 210
mo = 3 (—pm—3 — 8pm—2 +19pm—1 — 19pm11 + 8pm+2 + pm43),
iv 840
Um = ﬁ (pm73 - gpmfl + 16pm - 9pm+1 + pm+3) .

Now, putting (5) and (8) in Eq.(4) and simplifying, following system of ODEs are reached:

Prm—s + 120p,, o +1191p,, 4 +2416p,, + 1191p,, 1 + 120p,, 2 + Ppis
210

ﬁzl (—pm—-3 —8pm—2 + 19pm—1 4+ 19pm+1 + 8pm+2 + pm+3) (8)
7
- EZl (—pm—3 — 56pm—2 — 245pm—1 + 245pm 11 + 56pma2 + pmt3)
126
- ﬁZZ (pm73 + 24pm72 + 15pm71 - 80pm + 15pm+1 + 24Pm+2 + pm+3) =0.
where
Z1 = Up= Pm—3 + 120pm—2 + 1191/)177,—1 + 2416pm + 11910m+1 + 120pm+2 + Pm+3,
7
Z> :l%zhhmﬁ—%mq—mm%rwﬁwﬂ+%WH+Mﬁy

If Crank-Nicolson scheme and forward difference approximation which are defined below is used respectively
in Eq.(9)

_ el b= pitt — p

D (9)

the following iteration equation is obtained

V1o + 20y Y3Pmy F Yapm -+ V5P + V6P + VTP (10)
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= VPm—3 +Y6Pm—2 + V5Pm—1 + VapPm + V3Pm+1 + V2Pm+2 + V1Pm+3-

where
m = [1+A+B-C),
v2 = [120+8A + 568 — 24C],
v3 = [1191 — 194 + 245B — 15C1,
4 = [2416+80C],
vs = [1191+19A4 — 2458 — 150],
v = [120—8A —56B — 24C), (11)
v = [1-A-B-C],
= 0,1,...,N,
A = 10}?3“&, B:%Zl, 0:6?%2.

To assure a unique solution, it is necessary to eliminate unknown parameters (p_3, p—2, P—1, PN 11, PN+25 PN43) .
from the resulting system (11). This procedure can be easily done using the values of u and boundary
conditions, and then following system

Rd™*! = s5q» (12)
is obtained where d™ = (po, p1, ..., pn) %

3. Stability Analysis

For the stability analysis, Von Neumann technique has been used. In a typical amplitude mode, we can
define the magnification factor £ of the error as follows

o = €net (13)
Using (13) into the (11),
w1 tiws
T Wy —iws’
is procured where
w1 = (2382 —30C) cos(kh) + (240 — 48C) cos(2kh) + (2 — 2C) cos(3kh) + (2416 + 80C)
w2 = (—38A4490B)sin(kh) + (16A 4 112B)sin(2kh) 4+ (2A + 2B) sin(3kh)

so that |¢| = 1, which shows unconditional stability of the linearized numerical scheme for the Rosenau-
Hymann equation.

4. Convergence: A Fully Discrete Algorithm

A higher-order B-spline collocation technique is employed in space, together with an appropriate time
discretization scheme, to approximate the nonlinear partial differential equation (4). The efficiency of a
computational algorithm is commonly evaluated in terms of accuracy, numerical flexibility, and ease of
implementation. Accordingly, this section outlines the fundamental ideas underlying the proposed approach
and summarizes the main results, while omitting detailed proofs. For a more comprehensive theoretical
treatment, the reader is referred to the existing literature.

More specifically, a brief discussion on the validity of the space—time scheme introduced above is provided
without presenting a formal proof. A rigorous and well-established theoretical background can be found
in [58, 59] and the references therein. It should be emphasized that the constants C; > 0 appearing in the
analysis are generic and may differ from one estimate to another.
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Global polynomial interpolation methods are well suited for problems in which the underlying solutions
are sufficiently smooth and the computational domain is simple. However, many physical and engineering
problems are defined on complex domains, where finite element approximations offer a more robust and
accurate representation of the solution behavior.

A key property of piecewise polynomial basis functions in approximation theory is their smoothness over
all user-defined subintervals, which makes them particularly advantageous for the analysis of approximate
solutions. On each spatial subinterval, p + 1 data values are available; consequently, there exists a poly-
nomial of degree at most p that interpolates these data points. The approximation error associated with
such polynomial representations depends on the spacing between the data points, commonly denoted by h.
As a consequence, the proposed technique exhibits superconvergence at the collocation points [60]. Here,
H"(Q) denotes the space of r-times differentiable functions, || - || represents the standard H" () norm,
and || - ||o denotes the L2(€2) norm.

Let vj, be an approximation to a function v(z) € H¥(Q) in Q. Also h is distance between the grids and
Q = U;Qy, where Q; = 25, Zit1], Tit1 = i + h. It is clear to notice [61, 62] that

v(z) — vn ()] < ChPTH|v][pr1 where 1 <p < k.

It follows that
|w(x) — wn ()] < CA™ M lw|lms1 where 1 <m < p,

is well established. For each w € Hy(Q), if wy, is an appropriate B—spline identified by a polynomial of
degree less or equal k. In this current spatial approximation, septic B-splines are utilized.

It follows that, in L2(Q) [63], a theoretical O(h®) accuracy is obtained from such a spatial approximation.
Here, for some T' > 0, a forward difference scheme of O(h®) in Lz2([0,T]) norm is accurate. The accuracy
for the entire discrete scheme can therefore be expressed as follows:

u(, t) — un(z, )| < C1h* + Cs,

with an appropriate C7 > 0 and C2 > 0.

5. Numerical Applications and Discussions

In this section, the proposed numerical scheme is implemented to obtain solutions of the Rosenau-Hyman
equation for various choices of spatial and temporal discretization parameters. The approximate solutions
are computed using the formulation developed in the previous sections. To assess the accuracy and reli-
ability of the proposed method, standard error measures widely adopted in the literature are employed,
namely the L2 and L error norms. These norms provide a quantitative evaluation of the global and maxi-
mum pointwise errors, respectively, and thus offer a clear indication of the performance and convergence
behavior of the numerical scheme.

N
LQ = HUcwact - Unumeric”g ~ hz ‘Ujeacact - (Unumem’c)j

2
E (14)
j=1
LOO = HUemact - Unumeric”OO = mjax ‘UjezaCt - (Unumeric)j’ ’ .7 = 17 27 ceey N. (15)
Rosenau-Hymann equation is considered for the parameters p = 2, o, u = —%. In this case, Eq. 4 is written
as:

Ut —UUy — UUgga — 3UgUzz =0 (16)

Analytical form of the Eq. (4) is
Ula,1) = 5 co®(“7 %), (17)

and the initial condition is
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U(,0) = —%co&(%).

To demonstrate the accuracy of the proposed numerical algorithm, the computational domain is chosen as
[z, = —10,2r = 10] in Eq. (16). The final simulation time is taken as ¢t = 10, in accordance with similar
studies reported in the literature.

In the numerical simulations, commonly adopted discretization parameters in the literature, namely
At = 0.01, 0.001 and h = 1, 0.1, are selected to ensure a consistent and meaningful comparison with
existing studies. The numerical solutions obtained by the proposed scheme are presented alongside the
corresponding exact solutions in order to assess the accuracy of the method.

At=001,h=01

t X Uezact(x; t) Unumeric(x; t)
64] t = 0.3 0.3 -.265169 -.265168
65] t = 0.3 0.3 -.265453 -.265453
0.3 0.3 -.265452 -.265168
0.3 1.0 -.251285 -.250340
0.3 1.6 -.227645 -.226221
1.0 0.3 -.265999 -.265168
1.0 1.0 -.253389 -.250340
1.0 1.6 -.230885 -.226221
1.6 0.3 -.266339 -.265168
1.6 1.0 -.255074 -.250340
1.6 1.6 -.233568 -.226221
2.0 0.3 -.266499 -.265168
2.0 1.0 -.256138 -.250340
2.0 1.6 -.235306 -.226221

Table 1. Numerical results at the collocation points of example 1 for h = 0.1 and A¢ = 0.01.

— Uy — Uy

— Ug —Ue
1.0 1.0E
0.5F 0.5£

X 00 X 00
5 =) E
-0.5 _0.5E
-1.0F —1.0£
-10 -5 0 5 10 15 20 -20 -10 0 10 20
X X

Fig. 1. Comparison of numerical solution for At = 0.01 and h = 0.1 with the exact solution.
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Fig. 2. The surface plots of numerical solutions of the problem and Contour plot for At = 0.01 and h = 0.1 at
z e [-1,1].

Fig. 3. The surface plots of numerical solutions of the problem and Contour plot for At = 0.01 and h =1 at
z € [-10,10].

o I I I il
-20 -10 0 10 20

Fig. 4. The surface plots of numerical solutions of the problem and Contour plot for At = 0.001 and h =1 at
z € [—20,20].
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At =0.01,h =0.1 At=0.01,h=1
t c Lo — Error Lo — Error Lo — Error Lo — Error
[64] 0.5 1.81E-02 2.68E-02 1.81E-02 2.68E-02
0.1 0.5 2.165E-04 6.666E-05 2.252E-06 6.650E-07
0.3 0.5 6.497E-04 1.999E-04 6.757E-06 1.995E-06
0.5 0.5 1.082E-03 3.332E-04 1.126E-05 3.325E-06
1.0 0.5 2.165E-03 6.665E-04 2.252E-05 6.651E-06
1.5 0.01 3.247E-03 9.997E-04 3.378E-05 9.977E-06
3.0 0.01 6.497E-05 1.999E-05 6.757E-05 1.995E-05
5.0 0.01 1.082E-04 3.332E-04 1.126E-04 3.327E-05
7.0 0.01 1.515E-04 4.667E-05 1.576E-04 4.659E-05
10.0 0.01 2.165E-04 6.665E-05 2.252E-04 6.658E-05
50.0 0.01 1.083E-03 3.324E-04 6.720E-04 2.094E-04
100.0 0.01 2.144E-03 6.596E-04 6.778E-04 2.115E-04

Table 2. The Absolute Error Norms at the collocation points of test problem for different values of A and
At = 0.01.

8x10%
5x10*
3x10*

0_-
3x10%
5x10%
8x10%1

Absolute Error

Fig. 5. Absolute error norms of the problem for At = 0.01 and h = 1.

Furthermore, the numerical values reported in Table 1 are directly compared with those available in
[64] and [65] for the case h = 0.1. The comparison reveals an excellent agreement between the present
results and the referenced solutions, thereby confirming the reliability of the proposed approach. In several
instances, the computed errors are observed to be smaller, indicating an improvement in accuracy.

Figure 1 depicts a two-dimensional graphical comparison between the numerical and exact solutions over
the time interval 0 < ¢ < 10, demonstrating that the proposed method accurately captures the solution
behavior throughout the evolution process. In addition, Figures 2, 3 and 4 display three-dimensional
surface plots of the numerical solutions for different choices of h and At, together with their corresponding
contour plots, which further illustrate the stability and convergence characteristics of the method.
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Overall, the numerical results presented in both tabular and graphical forms clearly indicate that the
proposed technique provides more accurate and reliable approximations than several existing methods
reported in the literature.

Table 2 reports the values of the La and Lo error norms computed for different time levels and step sizes.
These results clearly illustrate the influence of the discretization parameters on the behavior and accuracy
of the numerical scheme. A careful examination of the table shows that both error norms remain consi-
stently small, indicating the stability and high accuracy of the proposed method. Moreover, a noticeable
reduction in the error values is observed as the number of temporal subdivisions increases, demonstrating
the favorable impact of time refinement on the numerical performance.

To facilitate a direct comparison with previously published studies, the computations are extended up
to t = 100. Table 2 provides a detailed comparison between the results obtained by the present method
and those reported in Ref. [64]. It is evident from this comparison that the proposed collocation-based
approach, combined with the adopted discretization strategy, yields more accurate and reliable results
than the existing methods.

In addition, the absolute errors corresponding to At = 0.01 and h = 1 at selected time levels are depicted
in Figure 5. This figure clearly demonstrates that the numerical accuracy improves as the spatial step size
h decreases, confirming the convergence behavior of the proposed scheme.

6. Conclusion

In this paper, a collocation finite element method based on septic B-spline basis functions has been
presented for the numerical solution of the nonlinear Rosenau—Hyman equation. The stability of the
proposed scheme has been rigorously investigated via the von Neumann stability analysis, establishing its
unconditional stability. The accuracy and effectiveness of the method have been verified through several
numerical experiments, where absolute error norms were computed and the results were compared with
those reported in the existing literature. The obtained numerical results demonstrate that the proposed
approach yields highly accurate approximations while maintaining computational efficiency and ease of
implementation. Consequently, the method constitutes a reliable and efficient numerical framework that
can be extended to a wide class of nonlinear partial differential equations arising in wave propagation
phenomena.
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