Advances in Analysis and Applied Mathematics, 2(2) (2025), 132-141.

Y by S by Y B
https://doi.org/10.62298 /advmath.34

ISSN Online: 3062-0686 / Open Access ADVANCES IN ANALYSIS
AND APPLIED MATHEMATICS

") Check for updates

Research Paper

On the Well-Defined Solutions of a Nonlinear Difference
Equation with Variable Coefficients

Raafat Abo-Zeid,"*" Mehmet Giimiis, 2" Ana Catarina Carapito®¥
and Abdul Qadeer Khan*%

!Department of Basic Science, The Higher Institute for Engineering & Technology, Al-Obour, Cairo, Egypt,

2Department of Mathematics, Faculty of Science, Zonguldak Biilent Ecevit University, Zonguldak, Tiirkiye,
3Center of Mathematics and Applications of University of Beira Interior (CMA-UBI), Department of
Mathematics, University of Beira Interior, Covilha, Portugal,

4Department of Mathematics, University of Azad Jammu and Kashmir, Muzaffarabad, 13100, Pakistan,

*To whom correspondence should be addressed: abuzead73@Qyahoo.com
! m.gumus@beun.edu.trfana.carapito@ubi.pt8 abdulqadeerkhan1@gmail.com
Received 1 October 2025; Revised 5 December 2025; Accepted 26 December 2025; Published 31 December 2025

Abstract

Obtaining analytical solutions of nonlinear difference equations is of great importance for a full under-
standing of the long-term behavior of dynamical systems. Such equations are widely used in mathematical
modeling of complex systems, especially population dynamics, the spread of infectious diseases, economic
models, and biological processes. Therefore, obtaining analytical solutions of nonlinear difference equati-
ons is indispensable not only for theoretical purposes but also for making reliable predictions in applied
sciences. Based on this undeniable fact, in this paper, we study the following non-linear difference equation

€n£n—1

n = T < 1 < N 9
Snt an&n — bpén—2 met

where (an)nen, and (bn)nen, are periodic sequences of positive real numbers with prime period two and
with real initial values £€_2,£_1,&. We introduce the well-defined solutions and study their global behavior.
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1. Introduction

Difference equations have very useful applications in many fields, due to their nature (See [1, 2, 3, 4]).
Difference equations that contain a quadratic term is an important type of difference equations due to
the rich behavior of their solutions. For difference equations of second order with quadratic term (See
5,6, 7,80, 10, 11, 12, 13, 14, 15, 16, 17, 18]).
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In [19], we discussed the behavior of the solutions of the difference equation

ATnTn—1

Tyl = , n € Np, (1)

bTy — CTn_2o

where a, b, ¢ € (0,00) and the initial conditions x_2,x_1,xo are real numbers.

Motivated by Equation (1), we introduce and investigate the behavior of the well-defined solutions of the
difference equation (of quadratic term)

_ gngnfl
nt1 = P € No, (2)

where (an)nen, and (bn)nen, are periodic sequences of positive real numbers with prime period two and
the initial values £€_2,&_1,&o are real numbers.

For more results on difference equations with quadratic term (and nt" degree term) of third and higher
order (See[20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33] and the references therein).

2. Well-Defined Solutions of Equation (2)

This section is devoted to providing the explicit formula for the well-defined solutions of the difference
equation (2).
We assume in this section that

ao 7é b0a1 and a1l 74— blao.

Theorem 1. Let {{n )02 _o be a well-defined solution of Equation (2). If bobi # 1, then

n—1

2 1 — boby
_ : n=1,3,5,..,
= jl;lo (bob1)7 o — boai + ao
&n = (3)
n—2
2 1 — boby

& [1

- ,n=246,...,
j=o0 (bob1)iH1v —brao + a1

where v = % (1 —bobi — a(=biao + a1)), = & (=bo(1 = bob1) + abo(—brao + a1)) and o = £2.

Proof. Solution (3) can be written as

£2n+i :£—2+i sz(]% 1= 172 and n20717~“7 (4)
j=0
where 1— bob 1~ bob
‘ — bob1 . — bob1
= - d = -
V1) (bob1)? 11 — boa1 + ao and ¥2(5) (bob1)7*t v — brao + a1’
such that

1 1
v= a(l —bob1 — a(=biag + a1)), p= E(*bo(l — bob1) + abo(—brao + a1))
— &
and o = 5%2
We prove by induction. When n = 0, we have the following:
If 4 = 1, then we get

1 — boby

O = e e
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¢ 1 — boby ¢ 1 — boby
= & -1
L(=bo(1 = bob1) + bo(—brao + a1) + (—boa1 + ao) = E(—bo(1 — bob1) + ao(1 — bob1))
1 — boby
= 5_1 1
(1 —bob1)(=boz + ao)
a
o 571 —bo + apox
_ §o€—1
ao&o — bo&—2
= 51,
Similarly, for ¢ = 2.
Now assume that n > 1. Then
Eanban—1

foant1 =
" a2néan — ban€an—2

n—1 n—1
& I1 ¢205)é-1 T1 v1(4)
=0 =0

n—1
aodo _HO ¥2(4) — bodo TT7=3 ¥2(4)
.

n—2
ao [T} 20 b2()é-1 _HO ¥1(4)
o

& TT v2(0)(aovaln — 1)~ )

Ya(n —1)§1 nli[: ¥1(7)

aotp2(n — 1) —bo

1 — bob1 n-l .

~ (bob1)"v —brao + a1 S jl;I() 19
B a 1 — boby b
0 (bob1)™v — brao + a1 0

(1=t TT 6100

—bov(bob1)™ — boa1 +ao’

But as p = —bov, we get

(1 —bob1)§—1 nﬁl 1 (4)

j=0
w(bob1)™ — boa1 + ao

ont1 =

=¢{-1¢1(n) 1:[ V()
j=0

n
=& [[vl):
j=0
By similar argument, we can show that

Eant2 =&o H ¥2(4)

=0

and is omitted.
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This completes the inductive proof.

O

3. Behavior of the Well-Defined Solutions

Here, we discuss the behavior of Equation (2) using its closed-form well-defined solutions.

During subsections (3.1) and (3.2), we assume that

aop # boa1 and a1 # biaop.

3.1. Case b()bl 7& 1

Theorem 2. Suppose that {&n}me_o is a well-defined solution of Equation (2). If bobi > 1, then the
solution {€n}or_o converges to zero.

Proof. Assume that bpby > 1. Then v.(j) converges to zero as j — oo, t = 1,2. This implies that there
exists jo € No, such that | ¢ (j) |< €, for some 0 < € < 1 for all j > jo. Therefore, for t = 1,2 we get

| Comte | =I Eape | [] ¢¢ () |

j=0
jo—1 m

=l & ape |l TT we@) Il T ¢ |
3=0 j=do
Jo—1

<l &oae || JT ¢e) [ €m0t
j=0

This implies that the solution {&, }5> _o converges to zero. O

1.
2.
3.

In the remainder of this subsection, we suppose that bob1 < 1. Then, we have the following cases:

ap > boai and a1 > biao;
ap > boa1 and a1 < biaop;
ao < bpar and a1 > biap.

The case ap < boa1 and a1 < biap implies that bpb1 > 1, which is a contradiction.

Let

Ay = 1 — boby

= and Az = L= boby
—boa1 + ao

- —biao+ar’

Theorem 3. Assume that ap > boai, a1 > brag and let {&n}n_o be a well-defined solution of Equation
(2). We have the following:

1.
2.

3.

4.

If ap > 1 — bob1 + boa1 and a1 > 1 — bob1 + biao, then {&n}ne_o converges to 0 as n — 0.

]f boar < ap < 1 — bob1 + bpa1 and biap < a1 < 1 — bob1 + brag, then £2n+1 — OO(Sg’I’L(f_l)) and
&an — 00(sgn(&o)) as n — oo.

If ap > 1 — bob1 + boa1r and biap < a1 < 1 — bob1 + biao, then Eany1 — 0 and 2 — 0o(sgn(€o)) and
as n — oo.

If bpar < ap < 1 —bob1 + boa1 and a1 > 1 — bob1 + birao, then Eant1 — co(sgn(é—-1)) and &2n — 0 as
n — 0o.

Proof. When bob1 < 1, we get 1;(j) — A, i = 1,2.
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As bob1 < 1, we have
1 — boby 1 — bob1

Al = d|Ay| = —————.
|41l —boa1 + ag and || —biao + a1

1. The given conditions imply that |A¢| < 1 for ¢t = 1, 2. So that there exists jo € No, such that ¢.(j) < e
foragiven0<e<1,t=1,2.

Then for t = 1,2 we get

| Eomtt | =] E-ape || [ () |

7=0
jo—1 m

=l & ol TT we@) Il TT ¢ |
3=0 j=jo
Jo—1

< &oae || JT ¢e) [ €m0t
§=0

Therefore, the solution {{, }me_o converges to zero.

2. The given conditions imply that |A¢] > 1 for ¢ = 1,2. By the same argument as in (1), we get the
result.

Using (1) and (2), we get (3) and (4). O

Theorem 4. Assume that ag > boai, a1 < brao and let {&n}n_o be a well-defined solution of Equation
(2). We have the following:

1. If ap > max{l — bob1 + boax, %(1 — bob1 + a1)}, then {&n}ol _o converges to 0 as n — oo.

2. If ap < min{1 —bob1 + boa1, %(1 —bob1 +a1)}, then Eant1 — co(sgn(—1)) and Ean — co(sgn(&o)) as
n — 00.
3. If1—bob1 +boa1 < ap < %(1 — bob1 + a1), then &ant1 — 0 and &2 — 00(sgn(€o)) as n — oo.

4. If %(1 —bob1 + a1) < ap < 1 —bobr + boax, then Eant1 — co(sgn(§—1)) and E2n — 0 as n — co.

Proof. When bob1 < 1, we have ¥;(j) = A;, i =1,2.
It is enough to see that the conditions ap > boai and a1 < biaop imply that

1 —boby 1 —bob1

Al = _
| 1| —boa1 + ag biao — a1

and |Az| =
g

Theorem 5. Assume that ag < boai, a1 > birao and let {&n}n=_o be a well-defined solution of Equation
(2). We have the following:

1. If a1 > max{l — bob1 + b1ao, %(1 — bob1 + ao)}, then {&€n}o _o converges to 0 as n — oo.

2. If a1 < min{1 — bob; + b1ao, %(1 —bob1 +ao)}, then Eant1 — co(sgn(—1)) and E2n — co(sgn(€o)) as
n — 00.
3. If1—bob1 +biao < a1 < ﬁ(l — bob1 + aop), then fant1 — oo(sgn(é—1)) and €2, — 0 as n — oo.

4. If %(1 —bob1 + ao) < a1 < 1—bob1 + brao, then fant1 — 0 and E2n — 00(sgn(&o)) as n — oo.

Proof. 1t is enough to see that the conditions ap < bpa1 and a1 > biao imply that

- 1 bob
L= 0001 d Ag) = ——— Lol

A = —_ .
|A1] boai — ag —biaop + a1
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In the following two results, we suppose that the conditions

ap =1 —bob1 + boar and a1 =1 — bob1 + b1rao

are satisfied.

Theorem 6. All well-defined solutions of Equation (2) satisfy Conditions (5) converge to a period-2

solution.

Proof. The conditions
ao =1 — bob1 + boar and a1 =1 — bob1 + b1rao

imply that v.(j) converges to 1 as j — oo, t = 1,2. This implies that there exists jo € Np, such that

P (4) > 0, for all j > jo and t = 1,2. Therefore, for t = 1,2, we get

Eomat = E—24t H Pi(J)
j=0

Jo—1
=& 24t H P (j H P (J
J=Jo
Jo—1
=& o H Ui (j Zlnwt
J=Jo

We shall test the convergence of the series > 377 . In(j).
Using convergence criteria rules we find that the series Z;’i j, N1 () is convergent.
Suppose that 3 72 . Intp(j) = 0:, t = 1,2.

This implies that there exist two real numbers p; such that
lim §2m+t =pt, t€ {1, 2}.
m—r 00
Therefore, {£n}o2_o converges to the period-2 solution

{-.;p1,p2,p1,p2, ...},
where

Jo—1

= &-24( Hwt )6, t=1,2.

This completes the proof. [

Theorem 7. Let {&n}n2_o be a well-defined solution of Equation (2) that satisfies Conditions (5).

1 —bob: . ) .
=——th o d-2 solution.
«a . s—— en {&n}ol _o is a period-2 solution

1f
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Proof. If a = 1_71)061, then v =0 and = 0. Then
—biao + a1
. 1-— bobl . 1-— bObl
Y1) —boa1 + ao 1+ and ¢2(j) —biag + a1 2

The conditions
ao =1—bob1 +boar and a1 =1 — bob1 + b1ao

imply that

Then .
Eomyt = Eape | [ Vi) =& a4, t=1,2and m=0,1, ...
3=0

The proof is completed. [

3.2. Case by =1

This subsection is devoted to studing a special case of Equation (2) when boby = 1.
In this case, using simple calculations, we get the equations
T2n42 = T2n — b1ao + a1

and
T2n+3 = 2n+1 — boa1 + ao.

This implies that

5—1 H ’Yl(]) an:1a3>57“'a
j=0
€n = (6)
n—2
2
50 H 72(.7) 7n:274767"'7
j=0
where
() = N
m —bo + aga + a(—boair + ao)j
and
(j) = N
2 1+ a(—biao +a1)(j + 1)
where o = 50

Theorem 8. Every well-defined solution of Equation (2) converges to zero.

Proof. The proof is similar to that of Theorem (2) and is omitted. O

3.3. Case ag = b()al and a; = bl(l()
The conditions ap = boa1 and a1 = biap imply that boby = 1.
In this case, we have
Ton+2 = T2n and r2p43 = T2n41.
This implies that

n41

e (—2 )T a—135
_ -1 CLOOé—bO ) — Ly 9y Jy ey 7
&n (7)

§Oa% ,n=2406,...,

oy
=

where o =
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Theorem 9. Assume that ap = boa1, a1 = brag and let {&n}n=_o be a well-defined solution of Equation
(2) such that ag > bo + 1. If bjl < a <1, then {{n}ae_o converges to zero.

ao

Proof. Condition abo < a < 1 implies that a > Z—” from which apax — bg > 0 and —*— < 1.

o—1 o’ aga—bg

Then &2, — 0 and &2,+1 — 0 as n — oo and this completes the proof.
]
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