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Abstract

Obtaining analytical solutions of nonlinear difference equations is of great importance for a full under-
standing of the long-term behavior of dynamical systems. Such equations are widely used in mathematical
modeling of complex systems, especially population dynamics, the spread of infectious diseases, economic
models, and biological processes. Therefore, obtaining analytical solutions of nonlinear difference equati-
ons is indispensable not only for theoretical purposes but also for making reliable predictions in applied
sciences. Based on this undeniable fact, in this paper, we study the following non-linear difference equation

ξn+1 =
ξnξn−1

anξn − bnξn−2
, n ∈ N0,

where (an)n∈N0
and (bn)n∈N0

are periodic sequences of positive real numbers with prime period two and
with real initial values ξ−2, ξ−1, ξ0. We introduce the well-defined solutions and study their global behavior.
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AMS 2020 Classification: 39A10; 39A20; 40A05

1. Introduction

Difference equations have very useful applications in many fields, due to their nature (See [1, 2, 3, 4]).
Difference equations that contain a quadratic term is an important type of difference equations due to
the rich behavior of their solutions. For difference equations of second order with quadratic term (See
[5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18]).
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In [19], we discussed the behavior of the solutions of the difference equation

xn+1 =
axnxn−1

bxn − cxn−2
, n ∈ N0, (1)

where a, b, c ∈ (0,∞) and the initial conditions x−2, x−1, x0 are real numbers.

Motivated by Equation (1), we introduce and investigate the behavior of the well-defined solutions of the
difference equation (of quadratic term)

ξn+1 =
ξnξn−1

anξn − bnξn−2
, n ∈ N0, (2)

where (an)n∈N0
and (bn)n∈N0

are periodic sequences of positive real numbers with prime period two and
the initial values ξ−2, ξ−1, ξ0 are real numbers.

For more results on difference equations with quadratic term (and nth degree term) of third and higher
order (See[20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33] and the references therein).

2. Well-Defined Solutions of Equation (2)

This section is devoted to providing the explicit formula for the well-defined solutions of the difference
equation (2).

We assume in this section that
a0 6= b0a1 and a1 6= b1a0.

Theorem 1. Let {ξn}∞n=−2 be a well-defined solution of Equation (2). If b0b1 6= 1, then

ξn =


ξ−1

n−1
2∏
j=0

1− b0b1
(b0b1)jµ− b0a1 + a0

, n = 1, 3, 5, ...,

ξ0

n−2
2∏
j=0

1− b0b1
(b0b1)j+1ν − b1a0 + a1

, n = 2, 4, 6, ...,

(3)

where ν = 1
α (1− b0b1 − α(−b1a0 + a1)), µ = 1

α (−b0(1− b0b1) + αb0(−b1a0 + a1)) and α = ξ0
ξ−2

.

Proof. Solution (3) can be written as

ξ2n+i = ξ−2+i

n∏
j=0

ψi(j), i = 1, 2 and n = 0, 1, ..., (4)

where

ψ1(j) =
1− b0b1

(b0b1)jµ− b0a1 + a0
and ψ2(j) =

1− b0b1
(b0b1)j+1ν − b1a0 + a1

,

such that

ν =
1

α
(1− b0b1 − α(−b1a0 + a1)), µ =

1

α
(−b0(1− b0b1) + αb0(−b1a0 + a1))

and α = ξ0
ξ−2

.

We prove by induction. When n = 0, we have the following:

If i = 1, then we get

ξ−1ψ1(0) = ξ−1
1− b0b1

µ− b0a1 + a0
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= ξ−1
1− b0b1

1
α (−b0(1− b0b1) + b0(−b1a0 + a1) + (−b0a1 + a0)

ξ−1
1− b0b1

1
α (−b0(1− b0b1) + a0(1− b0b1))

= ξ−1
1− b0b1

(1− b0b1)(−b0 1
α + a0)

= ξ−1
α

−b0 + a0α

=
ξ0ξ−1

a0ξ0 − b0ξ−2

= ξ1.

Similarly, for i = 2.

Now assume that n ≥ 1. Then

ξ2n+1 =
ξ2nξ2n−1

a2nξ2n − b2nξ2n−2

=

ξ0
n−1∏
j=0

ψ2(j)ξ−1

n−1∏
j=0

ψ1(j)

a0ξ0
n−1∏
j=0

ψ2(j)− b0ξ0
∏n−2
j=0 ψ2(j)

=

aξ0
∏n−1
j=0 ψ2(j)ξ−1

n−2∏
j=0

ψ1(j)

ξ0
n−2∏
j=0

ψ2(j)(a0ψ2(n− 1)− b0)

=

ψ2(n− 1)ξ−1

n−1∏
j=0

ψ1(j)

a0ψ2(n− 1)− b0

=

1− b0b1
(b0b1)nν − b1a0 + a1

ξ−1

n−1∏
j=0

ψ1(j)

a0
1− b0b1

(b0b1)nν − b1a0 + a1
− b0

=

(1− b0b1)ξ−1

n−1∏
j=0

ψ1(j)

−b0ν(b0b1)n − b0a1 + a0
.

But as µ = −b0ν, we get

ξ2n+1 =

(1− b0b1)ξ−1

n−1∏
j=0

ψ1(j)

µ(b0b1)n − b0a1 + a0
= ξ−1ψ1(n)

n−1∏
j=0

ψ1(j)

= ξ−1

n∏
j=0

ψ1(j).

By similar argument, we can show that

ξ2n+2 = ξ0

n∏
j=0

ψ2(j)

and is omitted.
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This completes the inductive proof.
�

3. Behavior of the Well-Defined Solutions

Here, we discuss the behavior of Equation (2) using its closed-form well-defined solutions.

During subsections (3.1) and (3.2), we assume that

a0 6= b0a1 and a1 6= b1a0.

3.1. Case b0b1 6= 1

Theorem 2. Suppose that {ξn}∞n=−2 is a well-defined solution of Equation (2). If b0b1 > 1, then the
solution {ξn}∞n=−2 converges to zero.

Proof. Assume that b0b1 > 1. Then ψt(j) converges to zero as j → ∞, t = 1, 2. This implies that there
exists j0 ∈ N0, such that | ψt(j) |< ε, for some 0 < ε < 1 for all j ≥ j0. Therefore, for t = 1, 2 we get

| ξ2m+t | =| ξ−2+t ||
m∏
j=0

ψt(j) |

=| ξ−2+t ||
j0−1∏
j=0

ψt(j) ||
m∏
j=j0

ψt(j) |

<| ξ−2+t ||
j0−1∏
j=0

ψt(j) | εm−j0+1.

This implies that the solution {ξn}∞n=−2 converges to zero. �

In the remainder of this subsection, we suppose that b0b1 < 1. Then, we have the following cases:

1. a0 > b0a1 and a1 > b1a0;
2. a0 > b0a1 and a1 < b1a0;
3. a0 < b0a1 and a1 > b1a0.

The case a0 < b0a1 and a1 < b1a0 implies that b0b1 > 1, which is a contradiction.

Let

A1 =
1− b0b1
−b0a1 + a0

and A2 =
1− b0b1
−b1a0 + a1

.

Theorem 3. Assume that a0 > b0a1, a1 > b1a0 and let {ξn}∞n=−2 be a well-defined solution of Equation
(2). We have the following:

1. If a0 > 1− b0b1 + b0a1 and a1 > 1− b0b1 + b1a0, then {ξn}∞n=−2 converges to 0 as n→∞.
2. If b0a1 < a0 < 1 − b0b1 + b0a1 and b1a0 < a1 < 1 − b0b1 + b1a0, then ξ2n+1 → ∞(sgn(ξ−1)) and

ξ2n →∞(sgn(ξ0)) as n→∞.
3. If a0 > 1− b0b1 + b0a1 and b1a0 < a1 < 1− b0b1 + b1a0, then ξ2n+1 → 0 and ξ2n →∞(sgn(ξ0)) and

as n→∞.
4. If b0a1 < a0 < 1− b0b1 + b0a1 and a1 > 1− b0b1 + b1a0, then ξ2n+1 →∞(sgn(ξ−1)) and ξ2n → 0 as

n→∞.

Proof. When b0b1 < 1, we get ψi(j)→ Ai, i = 1, 2.
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As b0b1 < 1, we have

|A1| =
1− b0b1
−b0a1 + a0

and |A2| =
1− b0b1
−b1a0 + a1

.

1. The given conditions imply that |At| < 1 for t = 1, 2. So that there exists j0 ∈ N0, such that ψt(j) < ε
for a given 0 < ε < 1, t = 1, 2.

Then for t = 1, 2 we get

| ξ2m+t | =| ξ−2+t ||
m∏
j=0

ψt(j) |

=| ξ−2+t ||
j0−1∏
j=0

ψt(j) ||
m∏
j=j0

ψt(j) |

<| ξ−2+t ||
j0−1∏
j=0

ψt(j) | εm−j0+1.

Therefore, the solution {ξn}∞n=−2 converges to zero.

2. The given conditions imply that |At| > 1 for t = 1, 2. By the same argument as in (1), we get the
result.

Using (1) and (2), we get (3) and (4). �

Theorem 4. Assume that a0 > b0a1, a1 < b1a0 and let {ξn}∞n=−2 be a well-defined solution of Equation
(2). We have the following:

1. If a0 > max{1− b0b1 + b0a1,
1
b1

(1− b0b1 + a1)}, then {ξn}∞n=−2 converges to 0 as n→∞.

2. If a0 < min{1− b0b1 + b0a1,
1
b1

(1− b0b1 + a1)}, then ξ2n+1 →∞(sgn(ξ−1)) and ξ2n →∞(sgn(ξ0)) as
n→∞.

3. If 1− b0b1 + b0a1 < a0 <
1
b1

(1− b0b1 + a1), then ξ2n+1 → 0 and ξ2n →∞(sgn(ξ0)) as n→∞.

4. If 1
b1

(1− b0b1 + a1) < a0 < 1− b0b1 + b0a1, then ξ2n+1 →∞(sgn(ξ−1)) and ξ2n → 0 as n→∞.

Proof. When b0b1 < 1, we have ψi(j)→ Ai, i = 1, 2.

It is enough to see that the conditions a0 > b0a1 and a1 < b1a0 imply that

|A1| =
1− b0b1
−b0a1 + a0

and |A2| =
1− b0b1
b1a0 − a1

.

�

Theorem 5. Assume that a0 < b0a1, a1 > b1a0 and let {ξn}∞n=−2 be a well-defined solution of Equation
(2). We have the following:

1. If a1 > max{1− b0b1 + b1a0,
1
b0

(1− b0b1 + a0)}, then {ξn}∞n=−2 converges to 0 as n→∞.

2. If a1 < min{1− b0b1 + b1a0,
1
b0

(1− b0b1 + a0)}, then ξ2n+1 →∞(sgn(ξ−1)) and ξ2n →∞(sgn(ξ0)) as
n→∞.

3. If 1− b0b1 + b1a0 < a1 <
1
b1

(1− b0b1 + a0), then ξ2n+1 →∞(sgn(ξ−1)) and ξ2n → 0 as n→∞.

4. If 1
b1

(1− b0b1 + a0) < a1 < 1− b0b1 + b1a0, then ξ2n+1 → 0 and ξ2n →∞(sgn(ξ0)) as n→∞.

Proof. It is enough to see that the conditions a0 < b0a1 and a1 > b1a0 imply that

|A1| =
1− b0b1
b0a1 − a0

and |A2| =
1− b0b1
−b1a0 + a1

.

�
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In the following two results, we suppose that the conditions

a0 = 1− b0b1 + b0a1 and a1 = 1− b0b1 + b1a0 (5)

are satisfied.

Theorem 6. All well-defined solutions of Equation (2) satisfy Conditions (5) converge to a period-2
solution.

Proof. The conditions

a0 = 1− b0b1 + b0a1 and a1 = 1− b0b1 + b1a0

imply that ψt(j) converges to 1 as j → ∞, t = 1, 2. This implies that there exists j0 ∈ N0, such that
ψt(j) > 0, for all j ≥ j0 and t = 1, 2. Therefore, for t = 1, 2, we get

ξ2m+t = ξ−2+t

m∏
j=0

ψt(j)

= ξ−2+t

j0−1∏
j=0

ψt(j)
m∏
j=j0

ψt(j)

= ξ−2+t

j0−1∏
j=0

ψt(j)
m∑
j=j0

ln(ψt(j)).

We shall test the convergence of the series
∑∞
j=j0

lnψt(j).

Using convergence criteria rules we find that the series
∑∞
j=j0

lnψt(j) is convergent.

Suppose that
∑∞
j=j0

lnψt(j) = θt, t = 1, 2.

This implies that there exist two real numbers ρt such that

lim
m→∞

ξ2m+t = ρt, t ∈ {1, 2}.

Therefore, {ξn}∞n=−2 converges to the period-2 solution

{..., ρ1, ρ2, ρ1, ρ2, ...},

where

ρt = ξ−2+t(

j0−1∏
j=0

ψt(j))θt, t = 1, 2.

This completes the proof. �

Theorem 7. Let {ξn}∞n=−2 be a well-defined solution of Equation (2) that satisfies Conditions (5). If

α =
1− b0b1
−b1a0 + a1

, then {ξn}∞n=−2 is a period-2 solution.
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Proof. If α =
1− b0b1
−b1a0 + a1

, then ν = 0 and µ = 0. Then

ψ1(j) =
1− b0b1
−b0a1 + a0

= A1 and ψ2(j) =
1− b0b1
−b1a0 + a1

= A2.

The conditions
a0 = 1− b0b1 + b0a1 and a1 = 1− b0b1 + b1a0

imply that
ψ1(j) = 1 = ψ2(j).

Then

ξ2m+t = ξ−2+t

m∏
j=0

ψt(j) = ξ−2+t, t = 1, 2 and m = 0, 1, ....

The proof is completed. �

3.2. Case b0b1 = 1

This subsection is devoted to studing a special case of Equation (2) when b0b1 = 1.

In this case, using simple calculations, we get the equations

r2n+2 = r2n − b1a0 + a1

and
r2n+3 = r2n+1 − b0a1 + a0.

This implies that

ξn =


ξ−1

n−1
2∏
j=0

γ1(j) , n = 1, 3, 5, ...,

ξ0

n−2
2∏
j=0

γ2(j) , n = 2, 4, 6, ...,

(6)

where
γ1(j) =

α

−b0 + a0α+ α(−b0a1 + a0)j

and
γ2(j) =

α

1 + α(−b1a0 + a1)(j + 1)

where α = ξ0
ξ−2

.

Theorem 8. Every well-defined solution of Equation (2) converges to zero.

Proof. The proof is similar to that of Theorem (2) and is omitted. �

3.3. Case a0 = b0a1 and a1 = b1a0

The conditions a0 = b0a1 and a1 = b1a0 imply that b0b1 = 1.

In this case, we have
r2n+2 = r2n and r2n+3 = r2n+1.

This implies that

ξn =


ξ−1

(
α

a0α− b0

) n+1
2

, n = 1, 3, 5, ...,

ξ0α
n
2 , n = 2, 4, 6, ...,

(7)

where α = ξ0
ξ−2

.
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Theorem 9. Assume that a0 = b0a1, a1 = b1a0 and let {ξn}∞n=−2 be a well-defined solution of Equation

(2) such that a0 > b0 + 1. If b0
a0−1 < α < 1, then {ξn}∞n=−2 converges to zero.

Proof. Condition b0
a0−1 < α < 1 implies that α > b0

a0
, from which a0α− b0 > 0 and α

a0α−b0 < 1.

Then ξ2n → 0 and ξ2n+1 → 0 as n→∞ and this completes the proof.
�
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well-defined solutions of a nonlinear difference equation with variable coefficients, Adv. Anal.

Appl. Math., 2(2) (2025), 132-141. DOI 10.62298/advmath.34

https://doi.org/10.12697/ACUTM.2014.18.18
https://www.scopus.com/pages/publications/84921986548?origin=resultslist
https://www.webofscience.com/wos/woscc/full-record/WOS:000434719700003
https://doi.org/https://doi.org/10.1016/j.camwa.2008.02.028
https://www.scopus.com/pages/publications/46749083023?origin=resultslist
https://www.webofscience.com/wos/woscc/full-record/WOS:000258350000002
https://doi.org/10.1080/10236198.2015.1061517
https://www.scopus.com/pages/publications/84941166159?origin=resultslist
https://www.webofscience.com/wos/woscc/full-record/WOS:000360904200007
https://www.researchgate.net/profile/Mehmet-Guemues-5/publication/323797384_On_the_solutions_of_a_2K_2TH_order_difference_equation/links/5bebdceda6fdcc3a8dd4a685/On-the-solutions-of-a-2K-2TH-order-difference-equation.pdf
https://doi.org/10.1080/10236190802040992
https://www.webofscience.com/wos/woscc/full-record/WOS:000278248300002
https://doi.org/10.1080/10236190802054118
https://advmath.org/index.php/pub
http://creativecommons.org/licenses/by-nc/4.0/legalcode
https://doi.org/10.62298/advmath.34

	Introduction
	 Well-Defined Solutions of Equation (2)
	Behavior of the Well-Defined Solutions 
	Case b0b1=1
	Case b0b1=1
	Case a0= b0a1 and a1= b1a0


