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Abstract

In recent articles an extension of the exponential function including one or several parameters have been
exploited to introduce generalized forms of linear dynamical systems, including population dynamics
models, and some graphical curves and Chebyshev functions. In this article, by means of the Blissard
problem we define the reciprocal of parametric or fractional parametric-type exponentials in order to
define new-type Laplace transforms. Some examples are shown, derived by the second author using the
computer algebra system Mathematica c©.
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1. Introduction

It is well known that the exponential function behaves as an eigenfunction of the differentiation operator,
since

Decx = c ecx

(where x is a real or complex variable, D := d/dx, and c is real or complex number). Likewise the
Laguerre-type exponential

e1(x) :=
∞∑
k=0

xk

(k!)2
(1)

89

https://doi.org/10.62298/advmath.33
https://crossmark.crossref.org/dialog/?doi=10.62298/advmath.33&domain=pdf
https://orcid.org/0009-0004-4287-1354
https://orcid.org/0000-0003-0969-884X
https://orcid.org/0000-0002-7899-3087
https://ror.org/05vf0dg29
https://ror.org/02c2kyt77
https://ror.org/04q0nep37
paoloemilioricci@gmail.com
email:pierpaolo.natalini@uniroma3.it
d.caratelli@tue.nl


90 P. Natalini, D. Caratelli & P.E. Ricci

is an eigenfunction of the so called Laguerre derivative,

D̂L := DxD = D + xD2 ,

since

D̂L e1(cx) = c e1(cx) .

The above result has been extended as follows [1]-[8].

Consider the differential operator, containing n+ 1 derivatives

D̂(n−1)L := Dx · · ·DxDxD

= D
(
xD + x2D2 + · · ·+ xn−1Dn−1

)
= S(n, 1)D + S(n, 2)xD2 + · · ·+ S(n, n)xn−1Dn,

where S(n, k), (k = 1, 2, . . . , n), are the Stirling numbers of the second kind, and the function

en(x) :=
∞∑
k=0

xk

(k!)n+1 .

We have proven in [1] that the function en(c x) is an eigenfunction of the operator D̂nL, that is

D̂nL en(c x) = c en(c x).

Remark 1. For completeness, we recall that the operators D̂L = DxD and its iterates as D̂nL =
DxDxDx · · ·DxD can be considered as particular cases of the hyper-Bessel differential operators when
α0 = α1 = · · · = αn = 1 (the special case considered in operational calculus by Ditkin and Prudnikov
[9]). In general, the Bessel-type differential operators of arbitrary order n were introduced by Dimovski, in
1966 [10] and later called by Kiryakova hyper-Bessel operators, because are closely related to their eigen-
functions, called hyper-Bessel by Delerue [11], in 1953. These operators were studied in 1994 by Virginia
Kiryakova in her book [2], Ch. 3.

2. The Parametric Case

In a preceding article [1], we have proven the result

Theorem 1. The function of the complex variable x

e1,m(x) =
∞∑
k=0

xk

k! (k +m)!
, (2)

(where m is a positive integer number) is an eigenfunction of the operator

DxD +mD , (3)

since for every real or complex constant c, we find

(DxD +mD) e1,m(c x) = c e1,m(c x) .

Proof. In fact

(DxD +mD)
∞∑
k=0

ck xk

k! (k +m)!
= c

[
Dx

∞∑
k=1

ck−1 xk−1

(k − 1)! (k +m)!
+m

∞∑
k=1

ck−1 xk−1

(k − 1)! (k +m)!

]
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= c

[
D
∞∑
k=0

ck xk+1

k! (k +m+ 1)!
+m

∞∑
k=0

ck xk

k! (k +m+ 1)!

]

= c

[ ∞∑
k=0

(k + 1)
ck xk

k! (k +m+ 1)!
+m

∞∑
k=0

ck xk

k! (k +m+ 1)!

]

= c
∞∑
k=0

(k +m+ 1)
ck xk

k! (k +m+ 1)!
= c

∞∑
k=0

ck xk

k! (k +m)!
.

�

2.1. The fractional case

For any real number α > 0, the fractional derivative of powers, according the Euler definition, falling as a
special case in the definition of fractional derivative introduced by Caputo, writes

Dαxx
n =


Γ(n+ 1)

Γ(n+ 1− α)
xn−α , if n > dαe − 1 ,

0 , if n = 0, 1, . . . , dαe − 1 ,

where n ≥ 0 and dαe denotes the ceiling function, that is the smallest integer greater than or equal to α.
If c is a constant then Dαx c = 0.

Remark 2. We recall that the Caputo derivative is defined as

Dαa+f(x) =


1

Γ(m− α)

∫ x

a

f (m)(τ)

(x− τ)α−m+1
dτ , where m = dαe , if α /∈ N

f (α)(x), if α ∈ N ,

and reduces to the preceding equation when a = 0 and f(x) = xn.

The fractional exponential function (depending on α) is defined as

Expα(t) = 1 +
tα

Γ(α+ 1)
+

t2α

Γ(2α+ 1)
+ · · ·+ tnα

Γ(nα+ 1)
+ . . . .

It is an eigenfunction of the operator Dαx , since it results

DαxExpα(xt) = tα Expα(xt) .

More generally, we can consider the fractional parametric-type exponential function defined as

Expα,m(x) =
∞∑
k=0

xkα

Γ[kα+ 1] Γ[kα+m+ 1]
, (4)

and the operator

Dαx x
αDαx +mDαx , (5)

for which it results

(Dαx x
αDαx +mDαx ) [Expα,m(tx)] = tα [Expα,m(tx)] .

The purpose of this article is to introduce some generalized types of the Laplace transform including an
integer parameter m ≥ 0, and the operator D̂x,m = DxD +mD in Theorem 2.1, or its fractional version
in equation (5).
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We use an expansion of the type

g(x,m) =
∞∑
k=0

ak(m)xk ,

with real or complex ak(m) coefficients, converging in all plane and satisfying the eigenvalue property

D̂x,m g(c x,m) = λ(c) g(x,m) ,

with respect to the operator (3) or (5).

In what follows we use the compact notation for the coefficients of the g(x,m) expansion, letting am :=
{ak,m} , (k = 0, 1, 2, . . . ), a sequence which identifies the function g(x,m).

After constructing the reciprocal [g(x,m)]−1 of the considered expansion, we substitute this reciprocal
function in the place of exp(−xs) in the Laplace transformation.

So we get the new Laplace-type transform

Lg(x,m)(f) :=

∫ +∞

0

[g(xs,m)]−1f(x) dx = Fg(x,m)(s) .

In the one parameter case, we construct the reciprocal of the functions in (2) and (4).

An analogous result could be obtained in the multi-parameter case, but the relevant equations are more
involved.

We exploit the reciprocal of these unusual exponentials, obtained using an extension of the Blissard
problem, to construct generalized forms of the Laplace transform.

In all cases a generalized type of Laplace transform can be defined, and some numerical check is performed
using the computer algebra program Mathematica c©.

3. The Reciprocal of a Power Series

It is well known that, using the Blissard problem [13], the coefficients of the reciprocal of a power series
are expressed in terms of Bell polynomials.

3.1. The reciprocal of the parametric-type exponential (2).

Given the sequence a := {ak} = (a0, a1, a2, a3, . . . ), we consider the function

1

a0 + a1x+ a2
x2

2! + a3
x3

3! + . . .
(x ≥ 0),

in which we assume am := {ak,m} = {1/(k +m)!}, that is

1
1
m! + x

(1+m)! + x2

2!(2+m)! + x3

3!(3+m)! + . . .
(x ≥ 0). (6)

When m = 0, the reciprocal of the Laguerre-type exponential function (1) is recovered.

Note that the functions (6) are complete monotonic functions decreasing from the initial value 1, at x = 0,
and vanishing at infinity.
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Therefore, using the umbral formalism (that is, letting ak,m ≡ ak,m and bk,m ≡ bk,m), and exploting the
Blissard problem [13], from the equation

e1,m[am(s x)] e1,m[bm(s x)] = 1 ,

in which the coefficieents are depending on a given real or complex variable s, we find

1
∞∑
k=0

ak,m(s x)k

k!

=
∞∑
k=0

bk,m(s x)k

k!
,

so that we introduce the definition

Definition 1. The parametric Laguerre-type Laplace transform, where the ak,m are chosen according to
equation (6), is defined as

Lg(x,m)(f) :=

∫ ∞
0

f(x)
∞∑
k=0

ak,m(s x)k

k!

dx =

∫ ∞
0

f(x)
∞∑
k=0

bk,m(s x)k

k!
dx = Fg(x,m)(s) ,

where the bk,m coefficients are given by
b0,m := m!,

bn,m = Yn(−1!, 1
(1+m)! ; 2!, 1

(2+m)! ;−3!, 1
(3+m)! ; . . . ; (−1)nn!, 1

(n+m)! ), (∀n > 0),

(7)

and Yn is the nth Bell polynomial [13].

Using the Faà di Bruno formula, the second equation in (7), ∀n ≥ 0, writes

bn,m =
(n+m)!

n!

n∑
k=0

(−1)k k! a
−(k+1)
0 Bn,k

(
1!

(1 +m)!
,

2!

(2 +m)!
, . . . ,

(n− k + 1)!

(n− k + 1 +m)!

)
,

where Bn,k are partial Bell polynomials [12, 13].

3.2. The reciprocal of the fractional parametric-type exponential (4).

We consider the function

1

a0,m + a1,m
xα

Γ(α+ 1)
+ a2,m

x2α

Γ(2α+ 1)
+ a3,m

x3α

Γ(3α+ 1)
+ . . .

(x ≥ 0),

assuming am := {ak,m} = {1/Γ(kα+m+ 1)}, that is

1

1
Γ(m+1) +

xα

Γ(α+ 1) Γ(α+m+ 1)
+

x2α

Γ(2α+ 1) Γ(2α+m+ 1)
+

x3α

Γ(3α+ 1) Γ(3α+m+ 1)
+ . . .

(x ≥ 0),

the solution of the umbral equation

Expα,m[am(s x)] Expα,m[bm(s x)] = 1 ,
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in terms of the unknown sequence {bn,m}, using the Blissard problem and Bell’s polynomials, ∀n > 0,
writes


b0,m := Γ(m+ 1),

bn,m = Yn(−1!, 1
Γ(α+m+1) ; 2!, 1

Γ(2α+m+1) ;−3!, 1
Γ(3α+m+1) ; . . . ; (−1)nn!, 1

Γ(nα+m+1) ) ,

where Yn is the nth Bell polynomial [13].

In the particular case of the reciprocal of the Expα,m(x) function we must assume {a} ≡
1

Γ(m+1){1, 1, 1, . . . } and therefore, recalling that Bn,h(1, 1, . . . , 1) ≡ Sn,h, that is the Stirling numbers

of the second kind, it results

[Expα,m(x)]−1 = 1 +
∞∑
n=1

n∑
h=1

(−1)h
Γ(hα+m+ 1)

Γ(m+ 1)
Bn,h(1, 1, . . . , 1)xnα

=
∞∑
n=0

n∑
h=0

(−1)h
Γ(hα+m+ 1)

Γ(m+ 1)
Sn,h

xnα

Γ(nα+m+ 1)
,

where we have put S0,0 := 1.

3.3. A fractional-type Laplace transform

Using the above definition for the reciprocal of the fractional exponential, we can introduce a fractional
version (of order α, α > 0) of the Laplace Transform, by setting

Lα,m(f) :=

∫ ∞
0

f(x) [Expα,m(sx)]−1 dx = Fα,m(s) =

=

∫ ∞
0

f(x)

( ∞∑
n=0

n∑
h=0

(−1)h
Γ(hα+m+ 1)

Γ(m+ 1)
Sn,h

xnα

Γ(nα+m+ 1)

)
dx.

In what follows, we make a comparison among the classical Laplace Transform of assigned functions and
the fractional order Laplace transforms of order α = 1/2 and α = 3/2.

As it is shown in the obtained results, in all cases the graphs of the modulus and argument of the ordinary
Laplace Transform lies between the corresponding graphs of the two considered fractional order Laplace
transforms. This provides a graphical evidence of the monotonicity property satisfied by the fractional
order Laplace transforms.

4. Numerical Examples

4.1. Example 1. (m=0)

Assuming m = 0, consider the fractional Laplace Transforms F1/2 = F0,1/2, F3/2 = F0,3/2 of the Bessel

function J0(2
√
t), compared with the classical LT F = F0,1 of the same function.
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Fig. 1. Comparing the fractional LTs F0,1/2, F0,1,F0,3/2, of the function J0(2
√
t) - the case of the modulus,

assuming s = σ + 5i

Fig. 2. Comparing the fractional LTs F0,1/2, F0,1,F0,3/2, of the function J0(2
√
t) - the case of the argument,

assuming s = σ + 5i

Fig. 3. Comparing the fractional LTs F0,1/2, F0,1,F0,3/2, of the function J0(2
√
t) - the case of the modulus,

assuming s = 5 + i ω
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Fig. 4. Comparing the fractional LTs F0,1/2, F0,1,F0,3/2, of the function J0(2
√
t) - the case of the argument,

assuming s = 5 + i ω

4.2. Example 1. (m=2)

Assuming m = 2, consider the fractional Laplace Transforms F1/2 = F2,1/2, F3/2 = F2,3/2 of the Bessel

function J0(2
√
t), compared with the classical LT F = F2,1 of the same function.

Fig. 5. Comparing the fractional LTs F2,1/2, F2,1,F2,3/2, of the function J0(2
√
t) - the case of the modulus,

assuming s = σ + 5i
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Fig. 6. Comparing the fractional LTs F2,1/2, F2,1,F2,3/2, of the function J0(2
√
t) - the case of the argument,

assuming s = σ + 5i

Fig. 7. Comparing the fractional LTs F2,1/2, F2,1,F2,3/2, of the function J0(2
√
t) - the case of the modulus,

assuming s = 5 + i ω

Fig. 8. Comparing the fractional LTs F2,1/2, F2,1,F2,3/2, of the function J0(2
√
t) - the case of the argument,

assuming s = 5 + i ω
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4.3. Example 2. (m=0)

Assuming m = 0, consider the fractional Laplace Transforms F1/2 = F0,1/2, F3/2 = F0,3/2 of the function
exp(iπt), compared with the classical LT F = F0,1 of the same function.

Fig. 9. Comparing the fractional LTs F0,1/2, F0,1,F0,3/2, of the function exp(iπt) - the case of the modulus,

assuming s = σ − i

Fig. 10. Comparing the fractional LTs F0,1/2, F0,1,F0,3/2, of the function exp(iπt) - the case of the argument,

assuming s = σ − i
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Fig. 11. Comparing the fractional LTs F0,1/2, F0,1,F0,3/2, of the function exp(iπt) - the case of the modulus,

assuming s = 2 + i ω

Fig. 12. Comparing the fractional LTs F0,1/2, F0,1,F0,3/2, of the function exp(iπt) - the case of the argument,

assuming s = 2 + i ω

4.4. Example 2. (m=2)

Assuming m = 2, consider the fractional Laplace Transforms F1/2 = F2,1/2, F3/2 = F2,3/2 of the function
exp(iπt), compared with the classical LT F = F2,1 of the same function.
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Fig. 13. Comparing the fractional LTs F2,1/2, F2,1,F2,3/2, of the function exp(iπt) - the case of the modulus,

assuming s = σ − i

Fig. 14. Comparing the fractional LTs F2,1/2, F2,1,F2,3/2, of the function exp(iπt) - the case of the argument,

assuming s = σ − i

Fig. 15. Comparing the fractional LTs F2,1/2, F2,1,F2,3/2, of the function exp(iπt) - the case of the modulus,

assuming s = 2 + i ω
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Fig. 16. Comparing the fractional LTs F2,1/2, F2,1,F2,3/2, of the function exp(iπt) - the case of the argument,

assuming s = 2 + i ω

4.5. Example 3. (m=0)

Assuming m = 0, consider the fractional Laplace Transforms F1/2 = F0,1/2, F3/2 = F0,3/2 of the function

exp(−
√
t)/
√
t, compared with the classical LT F = F0,1 of the same function.

Fig. 17. Comparing the fractional LTs F0,1/2, F0,1,F0,3/2, of the function exp(−
√
t)/
√
t - the case of the

modulus, assuming s = σ − i
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Fig. 18. Comparing the fractional LTs F0,1/2, F0,1,F0,3/2, of the function exp(−
√
t)/
√
t - the case of the

argument, assuming s = σ − i

Fig. 19. Comparing the fractional LTs F0,1/2, F0,1,F0,3/2, of the function exp(−
√
t)/
√
t - the case of the

modulus, assuming s = 2 + i ω

Fig. 20. Comparing the fractional LTs F0,1/2, F0,1,F0,3/2, of the function exp(−
√
t)/
√
t - the case of the

argument, assuming s = 2 + i ω
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4.6. Example 3. (m=2)

Assuming m = 2, consider the fractional Laplace Transforms F1/2 = F2,1/2, F3/2 = F2,3/2 of the function

exp(−
√
t)/
√
t, compared with the classical LT F = F2,1 of the same function.

Fig. 21. Comparing the fractional LTs F2,1/2, F2,1,F2,3/2, of the function exp(−
√
t)/
√
t - the case of the

modulus, assuming s = σ − i

Fig. 22. Comparing the fractional LTs F2,1/2, F2,1,F2,3/2, of the function exp(−
√
t)/
√
t - the case of the

argument, assuming s = σ − i
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Fig. 23. Comparing the fractional LTs F2,1/2, F2,1,F2,3/2, of the function exp(−
√
t)/
√
t - the case of the

modulus, assuming s = 2 + i ω

Fig. 24. Comparing the fractional LTs F2,1/2, F2,1,F2,3/2, of the function exp(−sqrtt/t) - the case of the

argument, assuming s = 2 + i ω

Remark 3. Many other tests have been performed, by the second author, using the same procedure,
including the functions et Γ(t), exp(t2), Sinc(t), J1(t)/t, cos(t2), setting the parameter m = 0, 1, 2. The
relevant graphs are available at his email address.

5. Conclusion

We have shown that, using the parametric Laguerre-type exponentials and their fractional versions, it
is possible to define Laguerre-type parameric forms of the classical Laplace transform. We have used a
general result to construct the reciprocals of some exponential-type functions, and we have used these
reciprocals in place of the kernel of the usual Laplace transform.
Several worked examples of the new transformations, computed using the computer algebra system
Mathematica c© have been reported in the preceding Sections.

The introduced transformations could be used in the framework of fractional differential equations or in
that of the Laguerre-type ones.
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