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Abstract

In our present work, we first study certain Mathieu-type series and then define a new subclass of Pascu-
type analytic functions. Also some inheriting results like the Fekete-Szegö functional, radius problems,
a number of sufficient conditions and results related to partial sums are derived. Some new and known
consequences of our main results are also given.
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1. Introduction

We denote the class of analytic function having the form

f (z) = z +
∞∑
k=2

akz
k (z ∈ D), (1)

by A in the open unit disk

D = {z : z ∈ C and |z| < 1} .

Next, for any two functions g1, g2 ∈ A, the function g1 is said to be subordinate to the function g2, which
is written as

g1 ≺ g2,

if Schwarz function $ exist holomorphic in D with the following conditions

$ (0) = 0 and |$ (z)| < 1,
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such that

g1 (z) = g2 ($ (z)) (z ∈ D) .

For two analytic functions f and g, the convolution (Hadamard product) of f and g is defined as:

f(z) ∗ g(z) =
∞∑
k=0

akbkz
k.

Let P denote the well-known Carathéodory class of functions p, analytic in the open unit disk D, which
are normalized by

p (z) = 1 +
∞∑
k=1

ckz
k, (2)

such that

<{p (z)} > 0 (∀ z ∈ D) .

Furthermore, we denoted by N the class of all those well-known functions, which are univalent in D. A
function f ∈ A is said to be in N ∗, the class of starlike functions, if

<
(
zf ′ (z)

f(z)

)
> 0 (z ∈ D).

Equivalently

N ∗(ϕ) =

{
f ∈ A :

zf ′(z)

f(z)
≺ ϕ(z)

}
, (3)

where

ϕ(z) =
(1 + z)

(1− z) .

By giving some specific values to ϕ (z), then we can get some known subclasses of N , some of them are
listed as follows:

1. For ϕ(z) = 1 + sin z, we have the functions class N ∗(ϕ) of starlike functions associated with the sine
functions (see [1]).

2. For ϕ(z) = 1 + z − 1
3z

3, we have the functions class of starlike functions associated with the nephroid
(see [2]).

3. For ϕ(z) = ez, we have the functions class of starlike functions associated with the exponential functi-
ons (see [3]).

4. For ϕ(z) = z +
√

1 + z2, we have the functions class of starlike functions associated with the crescent
shaped region (see [4] ).

The classes defined above play an important role in the development of this filed. Many interesting
properties of each of the defined functions classes have been studied from different viewpoints and pros-
pectives. Also, it could be seen that, as time passed some new subclasses were introduced and studied see
[5, 6, 7] by taking ϕ in (3) with some other specific type of functions.

The class N ∗ [M,N ] of starlike functions associated with the Janwoski function can be defined as
follows.



A Subclass of Analytic Functions 75

Definition 1. [8] A function f is called in the class N ∗ [M,N ] if

zf ′ (z)

f (z)
≺ 1 +Mz

1 +Nz
(−1 ≤ N < M ≤ 1) .

Or

zf ′ (z)

f (z)
=

(M + 1) p (z)− (M − 1)

(N + 1) p (z)− (N − 1)
(−1 ≤ N < M ≤ 1) . (4)

This function N ∗ [M,N ] of starlike functions was given by Janowski [8].

The following series (Mathieu-type series) is named after ’Emile Leonard Mathieu (1835–1890), who
examined it in his monograph [9] on the elasticity of solid bodies.

T (i) =
∞∑
k=1

2k

(k2 + i2)2
(i > 0) .

The series T (i) has a closed integral form and is given by (see [10])

T (i) =
1

i

∫ ∞
0

t sin (it)

et − 1
dt.

The Mathieu-type series is defined as follows (see [11]):

T (i; z) =
∞∑
k=1

2k

(k2 + i2)2
zk (i > 0, |z| < 1) .

It was originally created for functions of real variables, but Bansal et al. [12] extended it to complex
variables. Since T (i; z) /∈ H so using following normalization, we have

T (i; z) =

(
i2 + 1

)2
2

∞∑
k=1

2k

(k2 + i2)2
zk

= z +
∞∑
k=2

k
(
i2 + 1

)2
(k2 + i2)2

zk, (5)

for some related work we refer the reader to see [13]-[15].

The theory of operators play a vital role in the development of Geometric Function Theory. Many new
operators have been studied systematically from many different aspects and by means of these operators
some useful subclasses have been defined and studied, see for example [16]. A number of integral and
differential operators can be described in term of convolution. These operators are helpful in understan-
ding the mathematical exploration and geometric configuration of analytic functions. The importance of
convolution in the theory of operators may be understood by [17]-[22].

Using the Hadamard product in conjunction with (1) and (5) , we introduce a new linear operator
Hi
k : A → A as follows

Hi
kf (z) = f (z) ∗ T (i; z) = z +

∞∑
k=2

k
(
i2 + 1

)2
(k2 + i2)2

akz
k. (6)

We now motivated by the above mentioned works and define the following function class of starlike functions
involving the Janwoski functions.
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Definition 2. A function Hi
kf (z) of the form (6) is said to be in the class N ∗mλ (M,N) if and only if

z
(
Hi
kf (z)

)′
(1− λ) z + λHi

kf (z)
≺ 1 +Mz

1 +Nz
(z ∈ D). (7)

Or equivalently we can write the above subordination as follows:∣∣∣∣∣ (1− λ) z + λHi
kf (z)− z

(
Hi
kf (z)

)′
Nz
(
Hi
kf (z)

)′ −M {
(1− λ) z + λHi

kf (z)
}∣∣∣∣∣ < 1.

By taking λ = 0, we state the following class:

Definition 3. A function Hi
kf (z) of the form (6) is said to be in the class R (M,N) if and only if

(
Hi
kf (z)

)′
≺ 1 +Mz

1 +Nz
(z ∈ D).

Or equivalently we can write the above subordination as follows:∣∣∣∣∣
(
Hi
kf (z)

)′
N
(
Hi
kf (z)

)′ −M
∣∣∣∣∣ < 1.

Remark 1. If we let λ = 1, in the above Definition, we have the function class defined and studied by
[18].

The problems related to the coefficients of a function from the class A is a core of attractions for
many mathematicians. One of the most important problem related to coefficients of the functions f is
the Bieberbach conjecture which was solved by De-Branges, 70 years after its formulation. The Fekete-
Szegö functional

∣∣a3 − a22∣∣ is also one of the important finding for the coefficients of the functions f. This

functional is further generalized as
∣∣a3 − µa22∣∣. Fekete and Szegö gave sharp estimates of

∣∣a3 − µa22∣∣ for a
real µ and f ∈ N .

In Geometric Function Theory of Complex Analysis many authors have motivated by the problems
related to coefficients. We have chosen to add some remarkable recent work on this subject (see for
example [23], [24], [25] and [26]) on various functions classes of analytic and bi-univalent functions. Also
one may attempt to produce the same results for a function class defined in different domains. Particularly,
interested can also obtain the q-extension of the defined functions classes and results. Furthermore, the
works presented in [23], [24], [25] and [26] can also be generalize by connecting it with some special type
of series.

Here in this paper, we find the Fekete-Szegö functional
∣∣a3 − µa22∣∣ for our defined functions class

N ∗mλ (M,N) . Also we give a number of sufficient conditions for a function to be in our newly defined
function class. Some other interesting results, like partial sums, desertion Theorems and radius problems
are derived. Relevant connection to those other related works are also highlighted. To find the Fekete-Szegö
functional, we need the following Lemma.

Lemma 1. ([20] and [21]) Let

p(z) = 1 + c1z + c2z
2 + . . .

be in the class P. Then for any complex number υ∣∣∣c2 − υc21∣∣∣ 5 2 max {1, |1− 2υ|} .
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In particular, if υ is a real parameter, then

∣∣∣c2 − υc21∣∣∣ 5

−4υ + 2 (υ 5 0)

2 (0 5 υ 5 1)

4υ − 2 (υ = 1) .

(8)

2. Main Results

Our first result is related to Fekete-Szegö functional.

Theorem 1. Let the function Hi
kf (z) given by (6) be in the class N ∗mλ (M,N) . Then for a complex

number µ,

∣∣∣a3 − µa22∣∣∣ ≤ (M −N)
(
i2 + 9

)2
6 (i2 + 1)2

max

{
1,

∣∣∣∣∣ρ1 (M,N, k)− 3µ (M −N)
(
i2 + 4

)4
(3− λ)

4 (λ− 2)2 (i2 + 9)2 (i2 + 1)2

∣∣∣∣∣
}
, (9)

where

ρ1 (M,N, k) = 4 (λ− 2) (M − 3N + (N + 1)λ− 2)
(
i2 + 9

)2 (
i2 + 1

)2
.

Furthermore, for a real parameter µ,

∣∣∣a3 − µa22∣∣∣ ≤



(
(M−N)

6(i2+1)2(3−λ)

)(
ρ2(M,N,k,λ)−3µ(M−N)(i2+4)

4
(3−λ)

3(λ−2)2(i2+1)2

)
(µ < σ1)

(
(M−N)(i2+9)

2

3(i2+1)2(3−λ)

)
(σ1 ≤ µ ≤ σ2)

(
(N−M)

6(i2+1)2(3−λ)

)(
ρ2(M,N,k,λ)−3µ(M−N)(i2+4)

4
(3−λ)

3(λ−2)2(i2+1)2

)
(µ > σ2) ,

(10)

where

ρ2 (M,N, k) = 4 ((N + 2)λ+M − 3N − 4) (λ− 2)
(
i2 + 9

)2 (
i2 + 1

)2
, (11)

σ1 =
4 (M − 3N +Nλ+ λ− 2) (λ− 2)

(
i2 + 9

)2 (
i2 + 1

)2
3 (M −N) (3− λ) (i2 + 4)4

and

σ2 =
4 ((N + 3)λ+M − 3N − 6) (λ− 2)

(
i2 + 9

)2 (
i2 + 1

)2
3 (M −N) (3− λ) (i2 + 4)4

.
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Proof. We begin by showing that the inequalities (9) and (10) hold true for Hi
kf (z) ∈ N ∗mλ (M,N). Since

Hi
kf (z) ∈ N ∗mλ (M,N) , therefore, we have the following subordination:

z
(
Hi
kf (z)

)′
(1− λ) z + λHi

kf (z)
≺ 1 +Mz

1 +Nz
. (12)

The above subordination can also be written as:

z
(
Hi
kf (z)

)′
(1− λ) z + λHi

kf (z)
=

(M + 1) p (z)− (M − 1)

(N + 1) p (z)− (N − 1)
(−1 ≤ N < M ≤ 1) .

Now let us consider

(M + 1) p (z)− (M − 1)

(N + 1) p (z)− (N − 1)
= 1 +

1

2
(M −N)p1z

+

{
1

2
(M −N)p2 −

1

4
(M −N)(N + 1)p21

}
z2 + ... (13)

Also

z
(
Hi
kf (z)

)′
(1− λ) z + λHi

kf (z)
=1 +

2 (2− λ)
(
i2 + 1

)2
(i2 + 4)2

a2z

+

{
3 (3− λ)

(
i2 + 1

)2
(i2 + 9)2

a3 −
4 (λ− 2)

(
i2 + 1

)4
(i2 + 4)4

a22

}
z2 + ... (14)

We find from the equations (14) and (13) that

a2 =
(M −N)

(
i2 + 4

)2
4 (2− λ) (i2 + 1)2

p1 (15)

and

a3 =
(M −N)

(
i2 + 9

)2
6 (3− λ) (i2 + 1)2

[
((N + 1) (λ− 2) +M −N)

p21
2

+ p2

]
. (16)

Thus, clearly, we find that

∣∣∣a3 − µa22∣∣∣ =
(M −N)

(
i2 + 9

)2
6 (3− λ) (i2 + 1)2

∣∣∣p2 − Ωp21

∣∣∣ , (17)

where

Ω =
3µ (M −N)

(
i2 + 4

)4
(3− λ)

8 (2− λ)2 (i2 + 9)2 (i2 + 1)2
− (N + 1) (λ− 2) + (M −N)

2 (λ− 2)
.

Finally, by applying Lemma 1 in conjunction with (17) , we obtain the result asserted by Theorem 1. �

Theorem 2. Let Hi
kf (z) ∈ N ∗mλ (M,N) be given by (1). Then

∞∑
k=2

k
(
i2 + 1

)2
(k2 + i2)2

(k − 1 + |Nk −Mλ|) |ak| ≤M −N. (18)
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Proof. Let Hi
kf (z) ∈ N ∗mλ (M,N). Then, (7) can be put in the form of Schwarz function $ (z) as

z
(
Hi
kf (z)

)′
(1− λ) z + λHi

kf (z)
=

1 +M$ (z)

1 +N$ (z)
(z ∈ D). (19)

Or equivalently ∣∣∣∣∣ (1− λ) z + λQ (k, i) f (z)− z (Q (k, i) f)′ (z)

Nz
(
Hi
kf (z)

)′ −M {
(1− λ) z + λHi

kf (z)
} ∣∣∣∣∣ < 1.

Consider

∣∣∣∣∣ (1− λ) z + λHi
kf (z)− z

(
Hi
kf (z)

)′
Nz
(
Hi
kf (z)

)′ −M {
(1− λ) z + λHi

kf (z)
}∣∣∣∣∣ =

∣∣∣∣∣∣∣
∑∞
k=2

k(i2+1)
2

(i2+k2)2
[k − 1] akz

k

(M −N) z +
∑∞
k=2

k(i2+1)2

(i2+k2)2
[Nk −Mλ] akzk

∣∣∣∣∣∣∣
≤

∑∞
k=2

k(i2+1)
2

(i2+k2)2
[k − 1] |ak|

(M −N) +
∑∞
k=2

(
k(i2+1)2

(i2+k2)2
|Nk −Mλ|

)
|ak|

< 1,

after simple computation we get the required inequality (34) . �

Example 1. For the function

f (z) = z +
∞∑
k=2

(
k2 + i2

)2
(M −N)

k (i2 + 1)2 (k − 1 + |Nk −Mλ|)
vkz

k (z ∈ D),

such that
∑∞
k=2 vk = 1, we have

∞∑
k=2

k
(
i2 + 1

)2
(k2 + i2)2

(k − 1 + |Nk −Mλ|) |ak| =
∞∑
k=2

k
(
i2 + 1

)2
(k2 + i2)2

(k − 1 + |Nk −Mλ|)

×

( (
k2 + i2

)2
(M −N)

k (i2 + 1)2 (k − 1 + |Nk −Mλ|)
vk

)

= (M −N)
∞∑
k=2

vk = (M −N) .

Corollary 1. Let Hi
kf (z) ∈ N ∗mλ (M,N) and be of the form (1). Then

|ak| ≤
(
k2 + i2

)2
(M −N)

k (i2 + 1)2 (k − 1 + |Nk −Mλ|)
(k ≥ 2) . (20)

Proof. The proof is quite straightforward, left for the reader. �

Theorem 3. Let Hi
kf (z) ∈ N ∗mλ (M,N) and be of the form (1). Then

r −
(
4 + i2

)2
(M −N)

2 (i2 + 1)2 (1 + |2N −Mλ|)
r2 ≤ |f (z)| ≤ r +

(
4 + i2

)2
(M −N)

2 (i2 + 1)2 (1 + |2N −Mλ|)
r2. (21)
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Proof. Consider

|f (z)| =

∣∣∣∣∣z +
∞∑
k=2

akz
k

∣∣∣∣∣ ≤ |z|+
∞∑
k=2

|ak| |z|k

= i+
∞∑
k=2

|ak| |i|k ,

since for |z| = r < 1 we have rk < r2 for k ≥ 2 and

|f (z)| ≤ r + r2
∞∑
k=2

|ak| .

Comparably

|f (z)| ≥ r − r2
∞∑
k=2

|ak| .

Now from (34) implies that

∞∑
k=2

k
(
i2 + 1

)2
(k2 + i2)2

(k − 1 + |Nk − λM |) |ak| ≤M −N.

But

∞∑
k=2

2
(
i2 + 1

)2
(4 + i2)2

(1 + |2N − λM |) |ak| ≤
∞∑
k=2

k
(
i2 + 1

)2
(k2 + i2)2

(k − 1 + |Nk − λM |) |ak| ≤M −N,

which gives

∞∑
k=2

|ak| ≤
(
4 + i2

)2
(M −N)

2 (i2 + 1)2 (1 + |2N − λM |)
.

�

Theorem 4. Let Hi
kf (z) ∈ N ∗mλ (M,N) and be of the form (1). Then

r −
(
4 + i2

)2
(M −N)

(i2 + 1)2 (1 + |2N − λM |)
r2 ≤

∣∣f ′ (z)∣∣ ≤ r +

(
4 + i2

)2
(M −N)

(i2 + 1)2 (1 + |2N − λM |)
r2. (22)

Proof. The proof is quite similar as Theorem 3, so omitted. �

Theorem 5. Let fi ∈ N ∗mλ (M,N) and have of the from

fi (z) = z +
∞∑
k=2

ai,kz
k (i = 1, 2, 3, ..., k) . (23)

Then H ∈ N ∗mλ (M,N) , where

H (z) =
k∑
i=1

cifi (z) with
k∑
i=1

|ci| = 1. (24)
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Proof. From Theorem 2, we can write

∞∑
k=2

k
(
i2 + 1

)2
(k2 + i2)2

(k − 1 + |Nk − λM |) ak ≤M −N.

Also,

H (z) =
k∑
i=1

ci

(
z +

∞∑
k=2

ai,kz
k

)

= z +

∞∑
k=2

(
k∑
i=1

ciai,k

)
zk,

therefore

∞∑
k=2

k
(
i2 + 1

)2
(k2 + i2)2

(k − 1 + |Nk −Mλ|)

∣∣∣∣∣
k∑
i=1

ciai,k

∣∣∣∣∣ =
k∑
i=1

[ ∞∑
k=2

k
(
i2 + 1

)2
(k2 + i2)2

(k − 1 + |Nk −Mλ|) |ai,k|

]
|ci|

≤
k∑
i=1

(M −N) |ci| = (M −N)
k∑
i=1

|ci| = M −N,

thus H (z) ∈ N ∗mλ (M,N) . �

Remark 2. If we put λ = 1, in the above theorem, we will arrived at the result that was already proved
in [18].

Theorem 6. Let fi ∈ N ∗mλ (M,N), for i = 1, 2, ..., j. Then the arithmetic mean h of fi is given by

h (z) =
1

j

j∑
k=1

fi (z) , (25)

and also belong to class N ∗mλ (M,N) .

Proof. From (25), we can write

h (z) =
1

j

j∑
k=1

fi (z) =
1

j

j∑
k=1

(
z +

∞∑
k=2

aj,kz
k

)

= z +
∞∑
k=2

(
1

j

j∑
k=1

aj,k

)
zk,

to demonstrate that h (z) belong to N ∗mλ (M,N) , it’s enough to show that

∞∑
k=2

k
(
i2 + 1

)2
(k2 + i2)2

(k − 1 + |Nk −Mλ|)

∣∣∣∣∣1j
j∑

k=1

aj,k

∣∣∣∣∣ ≤M −N.
Consider

∞∑
k=2

k
(
i2 + 1

)2
(k2 + i2)2

(k − 1 + |Nk −Mλ|)

∣∣∣∣∣1j
j∑

k=1

aj,k

∣∣∣∣∣ =
1

j

j∑
k=1

( ∞∑
k=2

k
(
i2 + 1

)2
(k2 + i2)2

(k − 1 + |Nk −Mλ|) |aj,k|

)
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≤ 1

j

j∑
k=1

(M −N) = (M −N) ,

this show that M (z) belong to N ∗mλ (M,N) . �

Theorem 7. Let f ∈ N ∗mλ (M,N), then f is in class of starlike functions of order β (0 ≤ β < 1) for
|z| < i∗, where

i∗ =

(
(1− β) k

(
i2 + 1

)2
(k − β) (k2 + i2)2

(k − 1 + |Nk −Mλ|)
M −N

) 1
k−1

.

Proof. Let Hi
kf (z) ∈ N ∗mλ (M,N) . To prove f is in class of starlike functions of order β, it’s enough to

show that ∣∣∣∣ zf ′ (z)− f (z)

zf ′ (z) + (1− 2β) f (z)

∣∣∣∣ < 1.

Using 1 along with some basic math yields

∞∑
k=2

(
k − β
1− β

)
|ak| |z|k−1 < 1. (26)

Since Hi
kf (z) ∈ N ∗mλ (M,N) , from (18) we have

∞∑
k=2

k
(
i2 + 1

)2
(k2 + i2)2

(k − 1 + |Nk −Mλ|)
M −N |ak| < 1. (27)

Inequality (26) will holds true if the following holds true:

∞∑
k=2

(
k − β
1− β

)
|ak| |z|k−1 <

∞∑
k=2

k
(
i2 + 1

)2
(k2 + i2)2

(k − 1 + |Nk − λM |)
M −N |ak| ,

which implies that

|z|k−1 <

(
(1− β) k

(
i2 + 1

)2
(k − β) (k2 + i2)2

(k − 1 + |Nk − λM |)
M −N

)
,

thus we get required result. �

Theorem 8. Let f1 (z) = z and

fk (z) = z −
(
k2 + i2

)2
(M −N)

k (i2 + 1)2 (k − 1 + |Nk − λM |)
zk (z ∈ D, k ≥ 2) .

Then Hi
kf (z) ∈ N ∗mλ (M,N) if and only if Q (k, i) f can be expressed in the form

Hi
kf (z) =

∞∑
k=1

δkfk (z) (δk ≥ 0) , (28)

and

∞∑
k=1

δk = 1.
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Proof. From (28) , we can easily write

Hi
kf (z) =

∞∑
k=1

δkfk (z)

= z +
∞∑
k=2

δk

(
k2 + i2

)2
(M −N)

k (i2 + 1)2 (k − 1 + |Nk −M |)
zk,

then from Theorem 2, we can write

∞∑
k=2

k
(
i2 + 1

)2
(k2 + i2)2

(k − 1 + |Nk −Mλ|)
(
k2 + i2

)2
δk

k (i2 + 1)2 (k − 1 + |Nk −Mλ|)
= (M −N)

∞∑
k=2

δk

= (M −N) (1− δ1)

≤M −N.

Thus by Theorem 2, Hi
kf (z) ∈ N ∗mλ (M,N) . Conversely, let Hi

kf (z) ∈ N ∗mλ (M,N) since the Theorem
2, we have

|ak| ≤
(
k2 + i2

)2
(M −N)

k (i2 + 1)2 (k − 1 + |Nk −Mλ|)
(k ≥ 2) ,

we set

δk =
k
(
i2 + 1

)2
(k − 1 + |Nk −Mλ|)

(k2 + i2)2 (M −N)
|ak| , (k ≥ 2) ,

and

δ1 = 1−
∞∑
k=2

δk,

so it follows that

f (z) =
∞∑
k=1

δkfk (z) .

Hence proof is completed. �

Remark 3. If we put λ = 1, in the above Theorems 1-8 , we will arrived at the result that was already
proved in [18].

3. Partial Sum

In this section, we will examine the ratio of a function of the form (1) to its sequence of partial sums

fj (z) = z +

j∑
k=2

akz
k,

when the coefficients of f are sufficiently small to satisfy the condition (18). We will determine sharp lower
bounds for

<
(
f (z)

fj (z)

)
, <

(
fj (z)

f (z)

)
, <

(
f ′ (z)

f ′j (z)

)
and <

(
f ′j (z)

f ′ (z)

)
.
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Theorem 9. If f of the form (1) satisfies condition (18), then

<
(
f (z)

fj (z)

)
≥ 1− 1

ϑj+1
(∀z ∈ D) , (29)

and

<
(
fj (z)

f (z)

)
≥ ϑj+1

1 + ϑj+1
(∀z ∈ D) , (30)

where

ϑj =
k
(
i2 + 1

)2
(k − 1 + |Nk − λM |)

(k2 + i2)2 (M −N)
. (31)

Proof. For proving the inequality in (29), we suppose that:

ϑj+1

[
f (z)

fj (z)
−
(

1− 1

ϑj+1

)]
=

1 +
j∑

k=2

akz
k−1 + ϑj+1

∞∑
k=j+1

akz
k−1

1 +
j∑

k=2

akzk−1

=
1 + ψ1 (z)

1 + ψ2 (z)
.

We now set:

1 + ψ1 (z)

1 + ψ2 (z)
=

1 +$ (z)

1−$ (z)
.

After some straightforward simplification, we have that:

$ (z) =
ψ1 (z)− ψ2 (z)

2 + ψ1 (z) + ψ2 (z)
.

Thus, clearly, we find that:

$ (z) =

ϑj+1

∞∑
k=j+1

akz
k−1

2 + 2
j∑

k=2

akzk−1 + ϑj+1

∞∑
k=j+1

akzk−1

.

By using the triangular inequalities along with |z| < 1, we can get the following easily:

|$ (z)| ≤
ϑj+1

∞∑
k=j+1

|ak|

2− 2
j∑

k=2

|ak| − ϑj+1

∞∑
k=j+1

|ak|
.

Now |$ (z)| ≤ 1, if and only if

2ϑj+1

∞∑
k=j+1

|ak| ≤ 2− 2

j∑
k=2

|ak| ,
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or, equivalently

j∑
k=2

|ak|+ ϑj+1

∞∑
k=j+1

|ak| ≤ 1. (32)

Finally, in order to prove inequality in (29), we must show that the left hand side of (32) is bounded above
by the sum given by:

∞∑
k=2

ϑk |ak| ,

we have

j∑
k=2

(ϑk − 1) |ak|+
∞∑

k=j+1

(ϑk − ϑj+1) |ak| ≥ 0. (33)

By using (33), we see that the proof of inequality in (29) is completed.
Next in order to prove the inequality (30), we set:

(1 + ϑj+1)

(
fj (z)

f (z)
− ϑj+1

1 + ϑj+1

)
=

1 +
j∑

k=2

akz
k−1 − ϑj+1

∞∑
k=j+1

akz
k−1

1 +
∞∑
k=2

akzk−1

=
1 +$ (z)

1−$ (z)
,

we can write

|$ (z)| ≤
(1 + ϑj+1)

∞∑
k=j+1

|ak|

2− 2
j∑

k=2

|ak| − (ϑj+1 − 1)
∞∑

k=j+1

|ak|
≤ 1. (34)

This last inequality is equivalent to

j∑
k=2

|ak|+ ϑj+1

∞∑
k=j+1

|ak| ≤ 1. (35)

Finally we can see that the left hand side of the inequality in (35) is bounded above by the follwoing sum:

∞∑
k=2

ϑk |ak| ,

so we have completed the proof of the assertion (30) . Which completes the proof of Theorem 9. �

We next turn to ratios involving derivatives.
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Theorem 10. If f of the form (1) satisfies condition (18), then

<

(
f ′ (z)

f ′j (z)

)
≥ 1− j + 1

ϑj+1
(∀z ∈ D) , (36)

and

<
(
f ′j (z)

f ′ (z)

)
≥ ϑj+1

ϑj+1 + j + 1
(∀z ∈ D) , (37)

where ϑj is given by (31) .

Proof. The proof of Theorem 10 is similar to that of Theorem 9, we here choose to omit the analogous
details. �

Remark 4. If we put λ = 1, in the above Theorems in this section, we will arrived at the result that was
already proved in [18].

Remark 5. If we put λ = 0, one can easily state the result discussed in the paper for the class R (M,N)
given in Definition 3.

4. Conclusion

The theory of operators play a vital role in the development of Geometric Function Theory. Many new
operators have been studied systematically from many different aspects and by means of these operators
some useful subclasses have been defined and studied, see for example [16] and [19] see also [27, 28]. A
number of integral and differential operators can be described in term of convolution. These operators are
helpful to understood the mathematical exploration and geometric configuration of analytic functions.

In our present work, we have first studied certain Mathieu-type series and then have defined a new
subclass of Pascu-type analytic functions in the Janwoski domain. Also some inheriting results like the
Fekete-Szegö functional, radius problems, a number of sufficient conditions and results related to partial
sums have been derived for our defined function classes.
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[14] M. Nunokawa, J. Sokó l, On an extension of Sakaguchi’s Result, J. Math. Inequal., 9(3), (2015),
683-697. [CrossRef] [Scopus] [Web of Science]
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subclasses of bi-univalent functions involving Gegenbauer polynomials, Appl. Math. Sci. Eng., 30(1),
(2022), 501-520. [CrossRef] [Scopus] [Web of Science]

[26] M.F. Yassen, A.A. Attiya, P. Agarwal, Subordination and superordination properties for certain family
of analytic functions associated with Mittag–Leffler function, Symmetry, 12(10), (2020), 1724, 1-20.
[CrossRef] [Scopus] [Web of Science]
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