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Abstract

The following inequality is the well-known Hermite-Hadamard integral inequality for convex functions
defined on a segment
[a,] == {(1 — ) a+ th,t € [0, 1]}

with a, b vectors in a linear space X,

f<a+b) /f 1_t)a+tb]dt<w'

In this paper we provide some discrete inequalities related to the Hermite-Hadamard result for convex
functions defined on convex subsets in a linear space. Applications for norms and univariate real functions
with an example for the logarithm, are also given.

Key Words: Convex functions, Linear spaces, Jensen’s inequality, Hermite-Hadamard inequality, Norm
inequalities.
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1. Introduction

Let X be a real linear space, a, b € X, a # b and let [a,b] := {(1 — ) a+ b, X € [0,1]} be the segment
generated by a and b. We consider the function f : [a,b] — R and the attached function g (a,b) : [0,1] = R,
g(a,b)(t) := f[(L—t)a+1tb], t €[0,1].

It is well known that f is convex on [a, b] iff g (a, b) is convex on [0, 1], and the following lateral derivatives
exist and satisfy

() g (a,b) (s) = (V= [(1— s)at sb]) (b — ), 5 € [0,1)
(i) g (a,0) (0) = (V4 (@) (b —a)
(i) o (a,0) (1) = (V- f (b)) (b~ a)
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where (V+f (z)) (y) are the Gateauz lateral derivatives, we recall that

(V+f@) @) : = lim [f (Hh? - f(w)] 7
(V-f@) () = = lim {W} . e X,

The following inequality is the well-known Hermite-Hadamard integral inequality for convex functions
defined on a segment [a,b] C X :

f(a;rb>S/Olf[(l—t)a-s-tb]dtgw -

2 )
which easily follows by the classical Hermite-Hadamard inequality for the convex function g (a,b) : [0,1] —

R
g(a,b) G) S/lg(mb)(t)dtg 9(a,b) (0) +9(a,b) (1)
0

2

For other related results see the monograph on line [1]. For some Hermite-Hadamard type inequalities see
[2], [3], [4] and the references therein.
We have the following result [5] related to the first Hermite-Hadamard inequality in (HH):

Theorem 1. Let X be a linear space, a,b € X, a # b and f : [a,b] C X — R be a convex function on the
segment [a,b]. Then for any s € (0,1) one has the inequality

N =

(1= 9 (V4 F (A=) a+3sb]) (b —a) = s* (V- f[(1 = 8)a+ sb]) (b —a) (1)

IN

1
/ fll—=t)a+tbldt — f[(1—s)a+ sb|
0
1
<20 @ IO b—a) (T4 @) - a)].
The constant % is sharp in both inequalities. The second inequality also holds for s =0 or s = 1.

If f:]a,b] — R is as in Theorem 1 and Géateaux differentiable in ¢ := (1 — X)a + Xb, A € (0,1) along
the direction b — a, then we have the inequality:

(3-2)wr@e-as< [ sia-oara-reo. (2)

If f is as in Theorem 1, then

0<g[ver (450) om0 -9-r (50 -0 ®

1

f[(lft)athb]dtff(a;‘b)

IA
ool = S—

IN

[(Vv-f ) (b —a)=(V+](a))(b-a).

The constant é is sharp in both inequalities.
Also we have the following result [6] related to the second Hermite-Hadamard inequality in (HH):
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Theorem 2. Let X be a linear space, a,b € X, a# b and f : [a,b] C X — R be a convex function on the
segment [a,b]. Then for any s € (0,1) one has the inequality

(1= 9 (V4 F (A=) a+sb]) (b —a) = s> (V- f[(1 = $)a+sb]) (b —a)] (4)

N | =

<(1-=9)f(a)+sf(b /f (I—t)a+tbdt

IN
N =

[(1=9? (V-F ) (0= ) = 5> (v (@) (b - a)].
The constant % s sharp in both inequalities. The second inequality also holds for s =0 or s = 1.

If f:[a,b] — R is as in Theorem 2 and Géateaux differentiable in ¢ := (1 — X)a + Ab, XA € (0,1) along
the direction b — a, then we have the inequality:

(3-2)@r@0-a<a-Nr@+arm- [ rla-ne+aa (5)
0
If f is as in Theorem 2, then
0<g|vef (450) om0 - 91 (“50) -0 0
< 7’0(@);“})) */Olf[(l—t)anttb]dt
< S l@-T ) (b—a) = (V4] (@) b — )]

The constant é is sharp in both inequalities.

2. The Results

Let f: C C X — R be a convex function on C. We define the function Fy : C' x C — R by

1
Fr )= [ 700+t (7)
0
Theorem 3. Let f: C C X — R be a convexr function on C. Then the function Fy is convex on C' x C

and if x5, yi € C and p; >0 fori=1,...,n with ;" | p; = 1, then we have the inequalities

i=1 i=1

S i (e (52).

i=1

;pzfo f((l—t)a:i+tyz-)dt2/0 f<(1—t)2pil'i+tzpiyi> dt (8)

sz (M) sz/ F(A =) i+ ty:) dt ()
>3 (252) 2 (S (25))

i=1
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and

Zpl (7']0(%) % |: (ZP1$1> +f (Z}Mﬁ)} (10)
> /Olf ((1 —t)imwi +tipiyi> dt.

Proof. Let (z,y), (u,v) € C x C and o, 8 > 0 with a + 8 = 1. Then
Ff (a(z,y) + B (u,v)) = Ff (ax + Pu, ay + Bv)

1
:/0 F((1=1¢) (ax+ Bu) +t(ay + Bv)) dt
:/0 Flal(l=t)x +ty) + B[(1— ) u + to]) dt

1
s/ [ (1= )@+ ty) + B (1 — ) u+ tv)] dt

0
:a/lf((l—t)x—l—ty)dt-i—ﬁ/lf((l_t)u"’tv)dt
0 0
:aFf (x,y)+5Ff(U7U)v

which proves the joint convexity of the function F.
By Jensen’s inequality for the convex function Fy we have

n n n n
> piFy (wi,yi) > Fy <Zpi (%Zh)) =Fy (ZPM@ZMM) ;
=1 =1

=1 i=1

which is equivalent to the first inequality in (8).
By Hermite-Hadamard inequality (HH) we have

/1 f ((1 ft)zn:pm +t§n:piyi> dt > f (Z?:lpixi ; ZLIM%) dt
0 i=1 i=1
< Ti +Yi
1 (Som ()

and the second part of (8) is proved.
From (HH) we also have for each ¢ € {1,...,n} that

71%%)_2” Yi /f 1—t)w1+tyl]dt>f(zl+yl).

If we multiply this inequality by p; > 0 and sum over ¢ from 1 to n we get the first and second inequality
in (9).

The last part in (9) follows by Jensen’s inequality.

Let w:= Y 1 | pix; and v := > 7 | piy;. By Hermite-Hadamard inequality (HH) we also have

MZ/OIJC[Q—t)qu]dt,

which produces the second inequality in (10).
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By Jensen’s inequality for f we have

Zpif (xi) > f (Z pm)
and
sz (i) = f (Zm%) .

If we sum these two inequalities and divide by 2 we get the first inequality in (10). O

The following result also holds:

Theorem 4. With the assumptions of Theorem 3 we have
< é [lei (V+f (IZT—HJZ) (yi — mi)) a
Y ZTi +Yi
,;pi (vff ( 5 ) (yi — m)):|
n 1
= Zpi/o FIQ =)@ + tyi) dt — sz (*52)
i=1

< % D pi (V-1 W) (i — i) = Y pi (V+f () (i — Iz‘)] :
Li=1 i=1
and
0< % _;pz (V+f (:EZ erz) (yi — 331)) (12)

[ pi (V-f (i) (yi — ) — Z pi (V+f (@) (yi — mz)] :

=1 =1

We also have

i=1

-v-f <zn:pi (m;ry)> (im (yi — w))]

é [V+f (sz (x’ +yl)> <ipz > (13)

i=1

< /Olf ((1 —t)gmmﬂrtgpiyi) dt — <Z:: (ml+yl>>

é [(v f (me)) <gpi (vi — wz‘))
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ol o).
o o (S ) (S )

o) o)
[{Ew) ()
(o) (o)
(el o)

and

IN

IN

Proof. From the inequality (3) we have for a = z; and b = y;, where ¢ € {1,...,n} that

[V ! (rﬂryz) (Yyi —zi) —v-f (#) (yi —xi)}

s/ FUL= b+ ) d - f (T

< UG W) (s — ) — (T f () (s — )],

oo

for any ¢ € {1,...,n}.
If we multiply this inequality by p; > 0 and sum over i from 1 to n, then we get

[V+f (Jl71 hs yl) (yi —xi) —V-f (%Tw) (yi — l’i)]

i/olf[(l—t)wi-i-tyi]dt—ipif (%T—i_yl)

=1

0<

M:

<1
=8

IN
o

s
Il
=

IN
| =

Il
-

pi (V= f (i) (yi — xi) — (V+f () (i — )],

K3

which is equivalent to (11).
The inequality (12) follows in a similar way by employing the inequality (6).

The inequalities (13) and (14) follow by taking a = Y7 | piz; and b= Y7 | p;y; in the inequalities (3)

and (6). O

3. Examples for Norms

Now, assume that (X, ||||) is a normed linear space. The function fo () = & ||z||°, # € X is convex and

thus the following limits exist
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(V) (@), = (Vo () () = Jim [Lettellll],
(V) {@,9); = (V- fo () (w) = lim [l =lult],

for any z, y € X. They are called the lower and upper semi-inner products associated to the norm ||-|.
For the sake of completeness we list here some of the main properties of these mappings that will be
used in the sequel (see for example [7] or [8]), assuming that p, ¢ € {s,i} and p # ¢:

(&) (z,2),= ||| for all z € X;
(aa) <o¢x5y> —aﬁ(my) ifa, 3>0and z,y € X;
(ana)  |{2,9), | < llal ] for all =, y € X;
(av) (ax+y,z),=alz,z),+ (y,2),ifz,y€ X and a € R;
&) {9}, =~ (&,9), for all 7, y € X;
(va) (fEer, 2)p < llzll 2]l + (y, 2),, for all z, y, z € X;
(vaa) The mapping (-,-),, is continuous and subadditive (superadditive) in the first variable for p = s (or

p=1i);
(vaaa) The normed linear space (X, ||-||) is smooth at the point zo € X\ {0} if and only if (y,zo0), = (y, zo),
for all y € X; in general (y,z), < (y,z), for all z, y € X;
(ax) If the norm ||-|| is induced by an inner product (-,-), then (y,z), = (y,z) = (y,z), for all z, y € X.

Applying inequality (HH) for the convex function fr (z) = ||z||", r > 1 one may deduce the inequality

(15)

r 1 T s
< 10— i< Lo
0

I

for any x,y € X.

Let (X, ||-|]|) be a normed linear space and x = (x1,...,Zn), ¥ = (y1,...,yn) be n-tuples of vectors in
X, then for the probability distribution p = (p1,...,pn) and r > 1 we have by Theorem 3 for the convex
function f (z) = ||z||" that

n 1 1

Sop [ 10wl ez [

i=1 0 0

i .($i+yi)
Di D)

dt (16)

n n
(1 — t) Zpixi + thiyi
1=1 =1

r

’

Sop (Lol bl Z / poll(L =) + tyl]” de a7
i=1
ZZ;pz Pz(ml;yl) ’
> pixs

1 s
! { . } 18)
=1
1 n n r
/ =0 piai 6> pigs
0 i=1 i=1

If we use Theorem 4 for the convex function f (z) = %HxHQ then for ¢ = (21, ...,%n), ¥y = (Y1,---,Yn)
n-tuples of vectors in X and for the probability distribution p = (p1,...,pn) we have

Zpk <yk—Ik,M>s - e <yk—$k,$k;yk>l (19)
k=1

k=1

i +yi||”
2

and

r

+

n

> piys

i=1

%

i (II%II + llysll” )

dt.

\Y

<1
=1
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IA

T +
S [ 0= mnt e =Y | A
k=1 0 k=1 2

1 n
54[21% Yk — Tk, Yk); Zpk kxk,$k>:|7
and
1|« Tk + Yk < Tk + Yk
0<4Lz_:lpk<yk—wk, 5 >s—;pk<yk—xk, 5 >

n

J’» n
> ok (7”“” lyl ) Z / (1 —t) zp + tysl|® dt
k=1

n

i [Zpk Yk — Tk, Yk); Z Yk — Tk, ) } :

IN

| /\

We also have
o (o S (252))
AEreom ()]

2 2
dt —

S (52)

k=1

- <2pk (yk - ﬂﬁk) 5 Zpk$k> ]
k=1 k=1 s

n n
(1-1) Zpk$k+tzpkyk
k=1 k=1

1 n n
< 1 [<Zpk (yx —mk)7zpkyk>
— k=1

K3

and

o
IN

|
/\ =
—

(e £ (457))

St S (232))]

s ]

n n
(1—19) Z kl’k-f—tZPkyk
k=1 k=1

IN
o=

2
dt

/]

4. Examples for Functions of a Real Variable
If f: T — R is convex on the interval I and p; >0, ¢ € {1,...,n} with > |, p; = 1, then

% [<Zpk (Y —xk)7ZPkyk> - <Zpk (yr — 1’1@)7Zpk$k> } .
k=1 k=1 ; k=1 k=1 s

(20)

(21)

(22)
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n 1 1 n n
pi | (L =t)z +ty;)dt > f ((1 —t) ) piwi+t pi?h’) dt
Zm(w) sz/ PO = t) s+ tys) dt.

If f: 1 — R is convex and differentiable on the interior of I then for all z; € [ and pi >0,1€{1,..

with Y- | p; =1, then by (11) and (12) we get
- ! S Ti +Yi
0< Zpi/ FI0 = 0w+ tyilde =Y pif (B5Y)
i=1 0 i=1

éi @] i~ ),
and
0= Z” (W) —iﬁ;pz-/olf«l — )+ ty) dt
< S 0~ ) ).

If f(t) = 1 with ¢ > 0, then for y; # i, i € {1,...,n} we have

1 1
1 Iny; — Inz;
1-—t l‘i+tidt:/ dt =
/O 7 ) vi) o (I—1t)az: +ty Yi — Ts

and
-1

1 n n In (Zn_l pixz‘) —1In (Zﬂ_l piyi)
1-1¢ i 4t iYi dt = e o )
/0 <( );p v ;p v ) doie1 PiTi — Y PiYi

provided 77" pixi # D7 pivi
From (23) we get

Iy —Inz;  In (7, pixi) —In (7 piyi)
Ty D i1 Piti — i il

P; 1 -
In ﬁ <&> T em (2%1 pi%‘) Yooy PiTi Ty Pivs
i \Ti Zi=1 PiYi

P4

1
ﬁ < > P (E?:l DiT; ) S P — il PiVi
== .
. i1 PiYi

i=1

that is equivalent to

and to

From (24) we get in a similar way that

n
[Tty

Pz

29

(28)
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from (25) we get

Pq

1—[7} ) (&) Yi—@;
i= T;

e [Sp (525

1<

n ) (s — )2
)]SeXp<;Zpi(xl+y;)?S§ z)> (29)

i=1

and from (26) we get

(30)

> P Q 2,2
L3Y;

I, (L) 8

i=1
The interested reader may apply some of the above inequalities for other instances of convex functions
such as f (t) = —Int, tint, expt etc... and we omit the details.

exp [0, pi (352 )] " (o) (s — )
1< 2z,Y; < exp 1zpi($z+y1)(yz %) )
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