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Abstract

This article explores the use of integral methods in the proof of trigonometric inequalities. Although
classical methods such as induction, convexity, and series expansions are well established, the manipulation
of integrals to establish sharp trigonometric inequalities remains clearly underexploited. In particular, we
use primitive techniques, the Chebyshev integral inequality, and the Jensen integral inequality to recover
known results, including the Jordan, Kober, and Cusa-Huygens inequalities. New inequalities are also
derived and discussed. The corresponding proofs are given in detail for the sake of completeness. Some
figures illustrate selected two-sided inequalities. In final, this article provides a collection of trigonometric
inequalities suitable for advanced teaching and further research in many areas of analysis.
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1. Introduction

1.1. Context

Trigonometric inequalities play an important role in mathematical analysis, approximation theory and
various branches of applied mathematics. Among the classical results in this area is the Jordan inequality,
which gives a sharp lower bound for the sine function, i.e., for any x ∈ (0, π/2),

2

π
x < sin(x).

This result is particularly useful in approximation problems and in determining the behavior of the sine
function near the origin, i.e., x ∈ (0, ε) with small ε. An analogous inequality centered around the cosine
function is the Kober inequality which states that, for any x ∈ (0, π/2),

1− 2

π
x < cos(x).
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Also remarkable is the Cusa-Huygens inequality, which offers a refinement involving a special weighted
mean of the cosine function, i.e., for any x ∈ (0, π/2),

sin(x)

x
>

2 + cos(x)

3
.

Originally derived by Cusa in the fifteenth century and rigorously proved by Huygens two centuries later,
this inequality has inspired much research focused on its refinements and generalizations.

Each of these inequalities provides information about the structure and behavior of trigonometric functi-
ons. They serve as basic tools for deriving more sophisticated analytic results. Their generalizations often
involve the introduction of parameters, extensions to hyperbolic functions, and applications of power
means, convexity, and other methods of functional analysis.

We refer the interested reader to the reference book of Mitrinović [1] and the following notable articles:
[2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 15]. All of them contain results and extensive discussions on the
refinements, generalizations and applications of these classical trigonometric inequalities.

1.2. Contributions

Several proof techniques have been developed to establish trigonometric inequalities. These include math-
ematical induction, classical calculus tools such as monotonicity and convexity analysis, power series
expansions, differential inequalities, the theory of means, and more advanced tools from real and functio-
nal analysis. Each of these approaches has played a significant role in the development and refinement of
these inequalities.

Despite this diversity of methods, the use of integrals in proving trigonometric inequalities remains
relatively limited in the literature. This article aims to address this gap. We show how elementary integral
tools, particularly the fundamental theorem of calculus (primitive techniques), Chebyshev integral inequ-
ality, and Jensen integral inequality, can be used effectively to recover known results such as the Jordan,
Kober, and Cusa-Huygens inequalities. More importantly, these tools can also be employed to derive new
and original trigonometric inequalities.

All proofs are presented in full detail. They are accessible for teaching purposes and can serve as a basis
for further research. Where appropriate, some figures are displayed, showing the sharpness of selected
inequalities.

The integral-based method developed here offers a promising framework for extending the scope of
trigonometric inequalities to new mathematical horizons.

1.3. Article organization

The article is divided into six main sections, followed by an appendix. Each section presents a set of
trigonometric inequalities, arranged in increasing order of technical complexity. Section 2 introduces the
first results based on simple integral methods. Section 3 is devoted to trigonometric inequalities derived
from the Chebyshev integral inequality. Section 4 combines integral methods with the concavity properties
of the sine and cosine functions. Section 5 focuses on inequalities derived from the Jensen integral inequality.
Section 6 examines special inequalities involving double integrals. Section 7 contains concluding remarks.
The appendix presents the general forms of the Chebyshev integral inequality and the Jensen integral
inequality, which are central tools in our proofs.

2. First Set of Trigonometric Inequalities

2.1. Statement

Some well-known inequalities, including the Jordan and Kober inequalities, are examined in the proposition
below. The main interest remains the proof using simple integral methods.

Proposition 1. The integral method can be used to prove the classical trigonometric inequalities below.

1. For any x ∈ (0, π/2), we have

sin(x) < x.
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2. For any x ∈ (0, π/2), we have
sin(x) > x cos(x).

3. For any x ∈ (0, π/2), we have

sin(x) >
2

π
x.

4. For any x ∈ (0, π/2), we have

cos(x) > 1− 2

π
x.

Proof of Proposition 1. The proof is based on basic integral representations of the sine and cosine
functions, known inequalities and monotonicity properties.

1. A simple integral development gives

sin(x) = x

∫ 1

0

cos(ux)du.

For any u ∈ (0, 1) and x ∈ (0, π/2), we have cos(ux) < 1. We immediately derive

sin(x) = x

∫ 1

0

cos(ux)du < x

∫ 1

0

du = x.

2. We use again

sin(x) = x

∫ 1

0

cos(ux)du.

For any u ∈ (0, 1) and x ∈ (0, π/2), cos(ux) is strictly decreasing with respect to u. As a result, we
have

sin(x) = x

∫ 1

0

cos(ux)du > x cos(1× x)

∫ 1

0

du = x cos(x).

3. We use again

sin(x) = x

∫ 1

0

cos(ux)du.

For any u ∈ (0, 1) and x ∈ (0, π/2), cos(ux) is strictly decreasing with respect to x. Using this and an

integral calculus, i.e.,
∫ 1

0
cos (u(π/2)) du = 2/π, we obtain

sin(x) = x

∫ 1

0

cos(ux)du > x

∫ 1

0

cos
(
u× π

2

)
du =

2

π
x.

4. A basic integral calculus gives

cos(x) = 1− x
∫ 1

0

sin(ux)du. (1)

For any u ∈ (0, 1) and x ∈ (0, π/2), sin(ux) is strictly increasing with respect to u. This and an integral
calculus yields

cos(x) = 1− x
∫ 1

0

sin(ux)du > 1− x
∫ 1

0

sin
(
u× π

2

)
du = 1− 2

π
x.

This ends the proof of Proposition 1. �

The third item of this proposition is the Jordan inequality, and the fourth presents the Kober inequality.
The proofs using simple integral methods give a clear mathematical understanding of these famous results,
with the same mathematical foundation.
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The proposition below considers a more general one-parameter integral method. Its main interest is that
the integral can also be expressed in terms of polynomial-trigonometric functions, as will be shown later.
The proof is mainly based on the following basic trigonometric inequality: sin(x) < 1 for any x ∈ (0, π/2)
and Proposition 1.

Proposition 2. The integral method can be used to prove the trigonometric inequalities below.

1. For any α ≥ 0 and x ∈ (0, π/2), we have∫ 1

0

uα sin(ux)du <
1

α+ 1
min

(
1,
α+ 1

α+ 2
x

)
.

2. For any α ≥ 0 and x ∈ (0, π/2), we have∫ 1

0

uα sin(ux)du >
1

α+ 2
x cos(x).

3. For any α ≥ 0 and x ∈ (0, π/2), we have∫ 1

0

uα sin(ux)du >
1

α+ 1
× 2

π
.

4. For any α ≥ 0 and x ∈ (0, π/2), we have∫ 1

0

uα cos(ux)du >
1

α+ 1

(
1− 2

π
× α+ 1

α+ 2
x

)
.

Proof of Proposition 2.

1. For any u ∈ (0, 1), α ≥ 0 and x ∈ (0, π/2), we have sin(ux) < 1. So, we derive∫ 1

0

uα sin(ux)du <

∫ 1

0

uαdu =
1

α+ 1
.

On the other hand, for any u ∈ (0, 1), α ≥ 0 and x ∈ (0, π/2), the first item of Proposition 1 gives
sin(ux) < ux, which implies that∫ 1

0

uα sin(ux)du <

∫ 1

0

uα × uxdu = x

∫ 1

0

uα+1du =
1

α+ 2
x.

As a result, we have∫ 1

0

uα sin(ux)du < min

(
1

α+ 1
,

1

α+ 2
x

)
=

1

α+ 1
min

(
1,
α+ 1

α+ 2
x

)
.

2. For any u ∈ (0, 1), α ≥ 0 and x ∈ (0, π/2), it follows from the second item of Proposition 1 that
sin(ux) > ux cos(ux). This and the fact that cos(ux) is strictly decreasing with respect to u give∫ 1

0

uα sin(ux)du >

∫ 1

0

uα × ux cos(ux)du = x

∫ 1

0

uα+1 cos(ux)du > x cos(x)

∫ 1

0

uα+1du =
1

α+ 2
x cos(x).

3. For any u ∈ (0, 1), α ≥ 0 and x ∈ (0, π/2), the third item of Proposition 1 ensures that sin(ux) >
(2/π)ux. So, we have∫ 1

0

uα sin(ux)du >

∫ 1

0

uα × 2

π
uxdu =

2

π
x

∫ 1

0

uα+1du =
1

α+ 2
× 2

π
x.
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4. For any u ∈ (0, 1), α ≥ 0 and x ∈ (0, π/2), the fourth item of Proposition 1 gives 1 − cos(ux) >
1− (2/π)ux. So, we have

∫ 1

0

uα cos(ux)du >

∫ 1

0

uα ×
(

1− 2

π
ux

)
du =

∫ 1

0

uαdu− 2

π
x

∫ 1

0

uα+1du

=
1

α+ 1
− 2

π
× 1

α+ 2
x =

1

α+ 1

(
1− 2

π
× α+ 1

α+ 2
x

)
.

This concludes the proof of Proposition 2. �

Note that, based on the first and two items, for any α ≥ 0 and x ∈ (0, π/2), the following two-sided
inequality holds:

1

α+ 2
x cos(x) <

∫ 1

0

uα sin(ux)du <
1

α+ 1
min

(
1,
α+ 1

α+ 2
x

)
.

Tables 1 and 2 present some special cases of interest of this proposition, focusing on the first integer
values of α; Table 1 concerns the first and second items, while Table 2 concerns the third and fourth items.

α

∫ 1

0

uα sin(ux)du <
1

α+ 1
min

(
1,
α+ 1

α+ 2
x

)
0

1− cos(x)

x
< min

(
1,

1

2
x

)
1

sin(x)− x cos(x)

x2
<

1

2
min

(
1,

2

3
x

)
2

(2− x2) cos(x) + 2x sin(x)− 2

x3
<

1

3
min

(
1,

3

4
x

)
3

3(x2 − 2) sin(x)− x(x2 − 6) cos(x)

x4
<

1

4
min

(
1,

4

5
x

)
4

4x(x2 − 6) sin(x)− (x4 − 12x2 + 24) cos(x) + 24

x5
<

1

5
min

(
1,

5

6
x

)

α

∫ 1

0

uα sin(ux)du >
1

α+ 2
x cos(x)

0
1− cos(x)

x
>

1

2
x cos(x)

1
sin(x)− x cos(x)

x2
>

1

3
x cos(x)

2
(2− x2) cos(x) + 2x sin(x)− 2

x3
>

1

4
x cos(x)

3
3(x2 − 2) sin(x)− x(x2 − 6) cos(x)

x4
>

1

5
x cos(x)

4
4x(x2 − 6) sin(x)− (x4 − 12x2 + 24) cos(x) + 24

x5
>

1

6
x cos(x)

Table 1. Some special cases of interest of the first and second items of Proposition 2
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α

∫ 1

0

uα sin(ux)du >
1

α+ 2
× 2

π
x

0
1− cos(x)

x
>

1

2
× 2

π
x

1
sin(x)− x cos(x)

x2
>

1

3
× 2

π
x

2
(2− x2) cos(x) + 2x sin(x)− 2

x3
>

1

4
× 2

π
x

3
3(x2 − 2) sin(x)− x(x2 − 6) cos(x)

x4
>

1

5
× 2

π
x

4
4x(x2 − 6) sin(x)− (x4 − 12x2 + 24) cos(x) + 24

x5
>

1

6
× 2

π
x

α

∫ 1

0

uα cos(ux)du >
1

α+ 1

(
1− 2

π
× α+ 1

α+ 2
x

)
0

sin(x)

x
> 1− 2

π
× 1

2
x

1
x sin(x) + cos(x)− 1

x2
>

1

2

(
1− 2

π
× 2

3
x

)
2

(x2 − 2) sin(x) + 2x cos(x)

x3
>

1

3

(
1− 2

π
× 3

4
x

)
3

x(x2 − 6) sin(x) + 3(x2 − 2) cos(x) + 6

x4
>

1

4

(
1− 2

π
× 4

5
x

)
4

4x(x2 − 6) cos(x) + (x4 − 12x2 + 24) sin(x)

x5
>

1

5

(
1− 2

π
× 5

6
x

)

Table 2. Some special cases of interest of the third and fourth items of Proposition 2

To the best of our knowledge, the inequalities obtained for α = 2, 3, 4, in addition to those obtained for
the decimal values, are new in the literature.

2.2. Focus on the cases α = 0 and α = 1

Applying the third item of Proposition 2 to α = 0, for any x ∈ (0, π/2), we obtain

1− cos(x)

x
>

1

2
× 2

π
x =

1

π
x,

from which we derive

cos(x) < 1− 1

π
x2.

This is the ”second-type” Kober inequality.
Applying the fourth item of Proposition 2 to α = 0, for any x ∈ (0, π/2), we obtain

sin(x)

x
> 1− 2

π
× 1

2
x = 1− 1

π
x.

Applying the two first items in Proposition 2 to α = 1, for any x ∈ (0, π/2), we get the following
two-sided inequality:

1

3
x cos(x) <

sin(x)− x cos(x)

x2
<

1

2
min

(
1,

2

3
x

)
,

from which we derive

1

3
x3 cos(x) < sin(x)− x cos(x) <

1

2
x2 min

(
1,

2

3
x

)
. (2)
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In particular, the left-hand side inequality gives sin(x) − x cos(x) > (1/3)x3 cos(x) > 0, which allows us
to recover the second item of Proposition 1. This two-sided inequality is of interest because the difference
function sin(x)−x cos(x) naturally appears in various estimates and approximations. It often arises in the
analysis of trigonometric integrals and in the study of convexity properties of related functions.

3. Second Set of Trigonometric Inequalities

3.1. Statement

The statement below presents a new set of one-parameter trigonometric inequalities. The proof relies on
the monotonicity of the functions involved and the Chebyshev integral inequality, which is recalled in full
generality in Appendix.

Proposition 3. The integral method can be used to prove the trigonometric inequalities below.

1. For any α > 0 and x ∈ (0, π/2), we have∫ 1

0

uα cos(ux)du <
1

α+ 1
× sin(x)

x
.

The equality holds for α = 0.
2. For any α > 0 and x ∈ (0, π/2), we have∫ 1

0

uα sin(ux)du >
1

α+ 1
× 1− cos(x)

x
.

The equality holds for α = 0.

Proof of Proposition 3.

1. For any u ∈ (0, 1), α > 0 and x ∈ (0, π/2), uα is strictly increasing and cos(ux) is strictly decreasing
with respect to u. They are therefore of opposite monotonicity. The Chebyshev integral inequality
applied to these two functions gives

1

1− 0

∫ 1

0

uα cos(ux)du <

[
1

1− 0

∫ 1

0

uαdu

] [
1

1− 0

∫ 1

0

cos(ux)du

]
,

so that ∫ 1

0

uα cos(ux)du <
1

α+ 1
× sin(x)

x
.

For α = 0, we obviously have∫ 1

0

uα cos(ux)du =

∫ 1

0

cos(ux)du =
sin(x)

x
=

1

α+ 1
× sin(x)

x
.

2. For any u ∈ (0, 1), α > 0 and x ∈ (0, π/2), uα is strictly increasing and sin(ux) is strictly increasing
with respect to u. They are therefore of the same monotonicity. The Chebyshev integral inequality
applied to these two functions gives

1

1− 0

∫ 1

0

uα sin(ux)du >

[
1

1− 0

∫ 1

0

uαdu

] [
1

1− 0

∫ 1

0

sin(ux)du

]
,

so that ∫ 1

0

uα sin(ux)du >
1

α+ 1
× 1− cos(x)

x
.
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For α = 0, we obviously have∫ 1

0

uα sin(ux)du =

∫ 1

0

sin(ux)du =
1− cos(x)

x
=

1

α+ 1
× 1− cos(x)

x
.

This ends the proof of Proposition 3. �

Table 3 presents some special cases of interest of this proposition, focusing on the first integer values
of α.

α

∫ 1

0

uα cos(ux)du <
1

α+ 1
× sin(x)

x

1
x sin(x) + cos(x)− 1

x2
<

1

2
× sin(x)

x

2
(x2 − 2) sin(x) + 2x cos(x)

x3
<

1

3
× sin(x)

x

3
x(x2 − 6) sin(x) + 3(x2 − 2) cos(x) + 6

x4
<

1

4
× sin(x)

x

4
4x(x2 − 6) cos(x) + (x4 − 12x2 + 24) sin(x)

x5
<

1

5
× sin(x)

x

α

∫ 1

0

uα sin(ux)du >
1

α+ 1
× 1− cos(x)

x

1
sin(x)− x cos(x)

x2
>

1

2
× 1− cos(x)

x

2
(2− x2) cos(x) + 2x sin(x)− 2

x3
>

1

3
× 1− cos(x)

x

3
3(x2 − 2) sin(x)− x(x2 − 6) cos(x)

x4
>

1

4
× 1− cos(x)

x

4
4x(x2 − 6) sin(x)− (x4 − 12x2 + 24) cos(x) + 24

x5
>

1

5
× 1− cos(x)

x

Table 3. Some special cases of interest of Proposition 3

To the best of our knowledge, the inequalities obtained for α = 1, 2, 3, 4, in addition to those obtained
for the decimal values, are new in the literature.

3.2. Focus on the case α = 1

Applying the first item of Proposition 3 to α = 1, for any x ∈ (0, π/2), we get

x sin(x) + cos(x)− 1

x2
<

1

2
× sin(x)

x
,

so that
x2 sin(x) < 2[1− cos(x)].

The second item gives
sin(x)− x cos(x)

x2
>

1

2
× 1− cos(x)

x
,

so that
sin(x)− x cos(x) >

x

2
[1− cos(x)].

This refines the second item of Proposition 1.
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4. Third Set of Trigonometric Inequalities

4.1. Statement

The statement below presents another new set of one-parameter trigonometric inequalities. The proof is
based on the basic concave property (inequality) of the cosine and sine functions.

Proposition 4. The integral method can be used to prove the classical inequalities below.

1. For any α ≥ 0 and x ∈ (0, π/2), we have

∫ 1

0

uα cos(ux)du >
1

α+ 2

[
cos(x) +

1

α+ 1

]
.

2. For any α ≥ 0 and x ∈ (0, π/2), we have

∫ 1

0

uα sin(ux)du >
1

α+ 2
sin(x).

Proof of Proposition 4.

1. For any u ∈ (0, 1), α ≥ 0 and x ∈ (0, π/2), cos(ux) is strictly concave with respect to u. The basic
concave inequality gives

cos(ux) = cos[ux+ (1− u)0] > u cos(x) + (1− u) cos(0) = u cos(x) + (1− u).

We therefore have

∫ 1

0

uα cos(ux)du >

∫ 1

0

uα × [u cos(x) + (1− u)] du = cos(x)

∫ 1

0

uα+1du+

∫ 1

0

uαdu−
∫ 1

0

uα+1du

= cos(x)× 1

α+ 2
+

1

α+ 1
− 1

α+ 2

=
1

α+ 2

[
cos(x) +

1

α+ 1

]
.

2. For any u ∈ (0, 1), α ≥ 0 and x ∈ (0, π/2), sin(ux) is strictly concave with respect to u. This implies
that

sin(ux) = sin[ux+ (1− u)0] > u sin(x) + (1− u) sin(0) = u sin(x) + 0 = u sin(x).

We therefore have

∫ 1

0

uα sin(ux)du >

∫ 1

0

uα × u sin(x)du = sin(x)

∫ 1

0

uα+1du =
1

α+ 2
sin(x).

This concludes the proof of Proposition 4. �

The approach of mixing concave properties and the integral method seems to be unexploited in the
literature of trigonometric inequalities. In this sense, this proposition fills a gap.

Table 4 presents some special cases of interest of this proposition, focusing on the first integer values
of α.
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α

∫ 1

0

uα cos(ux)du >
1

α+ 2

[
cos(x) +

1

α+ 1

]
0

sin(x)

x
>

1

2
[cos(x) + 1]

1
x sin(x) + cos(x)− 1

x2
>

1

3

[
cos(x) +

1

2

]
2

(x2 − 2) sin(x) + 2x cos(x)

x3
>

1

4

[
cos(x) +

1

3

]
3

x(x2 − 6) sin(x) + 3(x2 − 2) cos(x) + 6

x4
>

1

5

[
cos(x) +

1

4

]
4

4x(x2 − 6) cos(x) + (x4 − 12x2 + 24) sin(x)

x5
>

1

6

[
cos(x) +

1

5

]

α

∫ 1

0

uα sin(ux)du >
1

α+ 2
sin(x)

0
1− cos(x)

x
>

1

2
sin(x)

1
sin(x)− x cos(x)

x2
>

1

3
sin(x)

2
(2− x2) cos(x) + 2x sin(x)− 2

x3
>

1

4
sin(x)

3
3(x2 − 2) sin(x)− x(x2 − 6) cos(x)

x4
>

1

5
sin(x)

4
4x(x2 − 6) sin(x)− (x4 − 12x2 + 24) cos(x) + 24

x5
>

1

6
sin(x)

Table 4. Some special cases of interest of Proposition 4

To the best of our knowledge, the inequalities obtained for α = 1, 2, 3, 4, as well as those associated
with all values of α ≥ 1, are indeed new in the literature.

4.2. Focus on the cases α = 0 and α = 1

Applying the first item of Proposition 4 to α = 0, for any x ∈ (0, π/2), we get

sin(x)

x
>

1

2
[cos(x) + 1] ,

so that, using a classical trigonometric formula,

sin(x)

x
> cos2

(x
2

)
.

The second item gives
1− cos(x)

x
>

1

2
sin(x),

so that, using a classical trigonometric formula,

cos2
(x

2

)
>

1

4
x sin(x).

Applying the first item of Proposition 4 to α = 1, for any x ∈ (0, π/2), we get

x sin(x) + cos(x)− 1

x2
>

1

3

[
cos(x) +

1

2

]
.
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The second item gives

sin(x)− x cos(x)

x2
>

1

3
sin(x),

from which we derive

sin(x)− x cos(x) >
1

3
x2 sin(x). (3)

This inequality is sharper than the left-hand side inequality in Equation (2), and also implies the second
item of Proposition 1.

5. Fourth Set of Trigonometric Inequalities

5.1. Statement

The statement below presents another new set of one-parameter trigonometric inequalities. The proof
relies on the concave property of the cosine and sine functions, and the Jensen integral inequality, which
is recalled in full generality in Appendix.

Proposition 5. The integral method can be used to prove the trigonometric inequalities below.

1. For any α ≥ 0 and x ∈ (0, π/2), we have

∫ 1

0

uα cos(ux)du <
1

α+ 1
cos

(
α+ 1

α+ 2
x

)
.

2. For any α ≥ 0 and x ∈ (0, π/2), we have

∫ 1

0

uα sin(ux)du <
1

α+ 1
sin

(
α+ 1

α+ 2
x

)
.

Proof of Proposition 5.

1. For any u ∈ (0, 1), α ≥ 0 and x ∈ (0, π/2), cos(ux) is strictly concave with respect to u. Furthermore,
the function p(u) = (α+ 1)uα is a valid probability density function, i.e., it satisfies p(u) ≥ 0 for any

u ∈ (0, 1) and
∫ 1

0
p(u)du = 1. This implies that

∫ 1

0

uα cos(ux)du =
1

α+ 1

∫ 1

0

p(u) cos(ux)du <
1

α+ 1
cos

(∫ 1

0

p(u)uxdu

)
=

1

α+ 1
cos

(
(α+ 1)x

∫ 1

0

uα+1du

)
=

1

α+ 1
cos

(
α+ 1

α+ 2
x

)
.

2. Similarly, but using the concavity of sin(ux) instead of that of cos(ux), we get

∫ 1

0

uα sin(ux)du =
1

α+ 1

∫ 1

0

p(u) sin(ux)du <
1

α+ 1
sin

(∫ 1

0

p(u)uxdu

)
=

1

α+ 1
sin

(
(α+ 1)x

∫ 1

0

uα+1du

)
=

1

α+ 1
sin

(
α+ 1

α+ 2
x

)
.

This ends the proof of Proposition 5. �

Table 5 presents some special cases of interest of this proposition, focusing on the first integer values
of α.
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α

∫ 1

0

uα cos(ux)du <
1

α+ 1
cos

(
α+ 1

α+ 2
x

)
0

sin(x)

x
< cos

(
1

2
x

)
1

x sin(x) + cos(x)− 1

x2
<

1

2
cos

(
2

3
x

)
2

(x2 − 2) sin(x) + 2x cos(x)

x3
<

1

3
cos

(
3

4
x

)
3

x(x2 − 6) sin(x) + 3(x2 − 2) cos(x) + 6

x4
<

1

4
cos

(
4

5
x

)
4

4x(x2 − 6) cos(x) + (x4 − 12x2 + 24) sin(x)

x5
<

1

5
cos

(
5

6
x

)

α

∫ 1

0

uα sin(ux)du <
1

α+ 1
sin

(
α+ 1

α+ 2
x

)
0

1− cos(x)

x
< sin

(
1

2
x

)
1

sin(x)− x cos(x)

x2
<

1

2
sin

(
2

3
x

)
2

(2− x2) cos(x) + 2x sin(x)− 2

x3
<

1

3
sin

(
3

4
x

)
3

3(x2 − 2) sin(x)− x(x2 − 6) cos(x)

x4
<

1

4
sin

(
4

5
x

)
4

4x(x2 − 6) sin(x)− (x4 − 12x2 + 24) cos(x) + 24

x5
<

1

5
sin

(
5

6
x

)

Table 5. Some special cases of interest of Proposition 5

To the best of our knowledge, these inequalities are new in the literature, as well as those obtained for
any α > 0.

5.2. Focus on the cases α = 0 and α = 1

Applying the first item of Proposition 5 to α = 0, for any x ∈ (0, π/2), we get

sin(x)

x
< cos

(
1

2
x

)
,

from which we derive

sin(x) < x cos

(
1

2
x

)
.

The second item gives
1− cos(x)

x
< sin

(
1

2
x

)
.

Applying the first item of Proposition 5 to α = 1, for any x ∈ (0, π/2), we obtain

x sin(x) + cos(x)− 1

x2
<

1

2
cos

(
2

3
x

)
.

The second item gives
sin(x)− x cos(x)

x2
<

1

2
sin

(
2

3
x

)
,
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from which we derive

sin(x)− x cos(x) <
1

2
x2 sin

(
2

3
x

)
.

To the best of our knowledge, it is new in the literature. Combining this with Equation (3), for any
x ∈ (0, π/2), we obtain the following two-sided inequality with bounds of comparable nature:

1

3
x2 sin(x) < sin(x)− x cos(x) <

1

2
x2 sin

(
2

3
x

)
. (4)

The sharpness of the lower bound is illustrated in Figure 1. We see that the difference is very small for
x ∈ (0, 0.5).

0.0 0.1 0.2 0.3 0.4 0.5

0
e

+
0

0
2

e
−

0
4

4
e

−
0

4
6

e
−

0
4

x

sin(x) − x cos(x) −(1/3) x^2 sin(x)

Fig. 1. Illustration of the sharpness of the lower bound in Equation (4) for x ∈ (0, 0.5)

The sharpness of the upper bound is illustrated in Figure 2. We also observe a difference which is very
small for x ∈ (0, 0.5).
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0.0 0.1 0.2 0.3 0.4 0.5

−
0

.0
0

0
2

5
−

0
.0

0
0

1
5

−
0

.0
0

0
0

5

x

sin(x) − x cos(x)−(1/2) x^2 sin((2/3) x)

Fig. 2. Illustration of the sharpness of the upper bound in Equation (4) for x ∈ (0, 0.5)

These figures illustrate the interest of our findings.

6. Specific Set of Inequalities

The proposition below presents some specific trigonometric inequalities. The proof is based on double
integral representations of the sine and cosine functions, and on Proposition 1. Some known results are
recovered and new ones are presented.

Proposition 6. The integral method can be used to prove the trigonometric inequalities below.

1. For any x ∈ (0, π/2), we have

sin(x) > x

(
1− 1

2
x

)
.

2. For any x ∈ (0, π/2), we have

sin(x) > x

(
1− 1

6
x2
)
.

3. For any x ∈ (0, π/2), we have

sin(x)

x
<

cos(x) + 2

3
.

4. For any x ∈ (0, π/2), we have

sin(x) < x

(
1− 1

3π
x2
)
.

5. For any x ∈ (0, π/2), we have

cos(x) > 1− 1

2
x2.
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6. For any x ∈ (0, π/2), we have

cos(x) < 1− 1

2
x2 +

1

3π
x3.

7. For any x ∈ (0, π/2), we have

sin(x) >
1

5

[
x cos(x)− 4x+

1

3
x3
]
.

Proof of Proposition 6.

1. It follows from two successive integral developments that

sin(x) = x

∫ 1

0

cos(tx)dt = x

∫ 1

0

∫ 1

0

[1− tx sin(tux)]dudt.

For any t, u ∈ (0, 1), α ≥ 0 and x ∈ (0, π/2), we have sin(tux) < 1. This and another basic integral
calculus yield

sin(x) > x

∫ 1

0

∫ 1

0

(1− tx× 1)dudt = x

∫ 1

0

∫ 1

0

(1− tx)dudt = x

(
1− 1

2
x

)
.

2. We use again

sin(x) = x

∫ 1

0

∫ 1

0

[1− tx sin(tux)]dudt.

For any t, u ∈ (0, 1), α ≥ 0 and x ∈ (0, π/2), the first item of Proposition 1 ensures that sin(tux) < tux.
This and a simple integral calculus give

sin(x) > x

∫ 1

0

∫ 1

0

[1− tx× (tux)]dudt = x

∫ 1

0

∫ 1

0

(1− t2x2u)dudt = x

(
1− 1

6
x2
)
.

3. We consider again

sin(x) = x

∫ 1

0

∫ 1

0

[1− tx sin(tux)]dudt.

For any t, u ∈ (0, 1), α ≥ 0 and x ∈ (0, π/2), using the second item of Proposition 1, we have
sin(tux) > tux cos(tux). This and a basic integral calculus yield

sin(x) < x

∫ 1

0

∫ 1

0

[1− tx× tux cos(tux)]dudt = x

∫ 1

0

∫ 1

0

[1− t2x2u cos(tux)]dudt = x

[
−2

sin(x)

x
+ cos(x) + 2

]
,

so that

sin(x)

x
< −2

sin(x)

x
+ cos(x) + 2

and

sin(x)

x
<

cos(x) + 2

3
.

4. We use again

sin(x) = x

∫ 1

0

∫ 1

0

[1− tx sin(tux)]dudt.

For any t, u ∈ (0, 1), α ≥ 0 and x ∈ (0, π/2), the third item of Proposition 1 ensures that sin(tux) >
(2/π)tux. This and a simple integral calculus yield

sin(x) < x

∫ 1

0

∫ 1

0

[
1− tx× 2

π
(tux)

]
dudt = x

∫ 1

0

∫ 1

0

(
1− 2

π
t2x2u

)
dudt = x

(
1− 1

3π
x2
)
.
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5. A double integral development yields

cos(x) =

∫ 1

0

[1− x sin(tx)]dt =

∫ 1

0

[
1− x(tx)

∫ 1

0

cos(tux)du

]
dt =

∫ 1

0

∫ 1

0

[
1− tx2 cos(tux)

]
dudt.

For any t, u ∈ (0, 1), α ≥ 0 and x ∈ (0, π/2), we have cos(tux) < 1. This and a basic integral calculus
give

cos(x) >

∫ 1

0

∫ 1

0

(
1− x2t

)
dudt = 1− 1

2
x2.

6. We use again

cos(x) =

∫ 1

0

∫ 1

0

[
1− tx2 cos(tux)

]
dudt.

For any t, u ∈ (0, 1), α ≥ 0 and x ∈ (0, π/2), the fourth item of Proposition 1 ensures that cos(tux) >
1− (2/π)tux. This and a basic integral calculus give

cos(x) <

∫ 1

0

∫ 1

0

[
1− x2t

(
1− 2

π
tux

)]
dudt = 1− 1

2
x2 +

1

3π
x3.

7. We use again

sin(x) = x

∫ 1

0

∫ 1

0

[1− tx sin(tux)]dudt.

For any t, u ∈ (0, 1), α ≥ 0 and x ∈ (0, π/2), based on the third item of this present proposition, we
have sin(tux) < tux[cos(tux) + 2]/3. This and an integral development give

sin(x) > x

∫ 1

0

∫ 1

0

(1− t2x2u
[

cos(tux) + 2

3

]
)dudt

= x

{
− 1

9x
[x3 − 12x+ 6 sin(x)− 3x cos(x)]

}
= −1

9
[x3 − 12x+ 6 sin(x)− 3x cos(x)],

so that

5

3
sin(x) > −1

9
[x3 − 12x− 3x cos(x)]

and

sin(x) >
1

5

[
x cos(x)− 4x+

1

3
x3
]
.

This concludes the proof of Proposition 6. �

These items can also be seen as refinements of the main inequalities in Proposition 1.
The fourth item corresponds to the Cusa-Huygens inequality. The fifth and sixth items yield the

following two-sided inequality:

1− 1

2
x2 < cos(x) < 1− 1

2
x2 +

1

3π
x3, (5)

which is new to our knowledge. The sharpness of the lower bound is illustrated in Figure 3. The difference
is very small for x ∈ (0, 0.5).
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0.0 0.1 0.2 0.3 0.4 0.5

0
.0

0
0

0
0

.0
0

1
0

0
.0

0
2

0

x

cos(x) − 1 + (1/2) x^2

Fig. 3. Illustration of the sharpness of the lower bound in Equation (5) for x ∈ (0, 0.5)

The sharpness of the upper bound is illustrated in Figure 4. We also observe a difference which is very
small for x ∈ (0, 0.5).

0.0 0.1 0.2 0.3 0.4 0.5

−
0

.0
1

0
−

0
.0

0
6

−
0

.0
0

2

x

 cos(x) − 1 + (1/2) x^2 − (1/(3 pi)) x^3

Fig. 4. Illustration of the sharpness of the upper bound in Equation (5) for x ∈ (0, 0.5)

These figures illustrate the interest of our findings.

7. Conclusion

In this article, we have examined the use of integral methods to prove trigonometric inequalities. While
such methods are often overlooked, we have shown that they are both effective and versatile. Using basic
tools such as primitive integration, the Chebyshev integral inequality and the Jensen integral inequality,
we have recovered classical results and derived new ones. All results are proved in detail. The methods
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are accessible and suitable for use in teaching, thus contributing to mathematical education. They also
provide new directions for research. Future work may involve extending these techniques to other classes
of functions, such as hyperbolic or inverse trigonometric functions. Another possible perspective is to
use them to deepen the notion of trigonometrically convex function, as developed in [7]. One could also
investigate inequalities involving integrals with parameters, or apply these ideas to numerical analysis, such
as in the context of [16], special functions and mathematical physics. These deserve further exploration in
the context of inequalities.

Appendix

The general statements of the Chebyshev integral inequality and the Jensen integral inequality are recalled
below.

Chebyshev integral inequality

Let a, b ∈ R with a < b and let f, g : [a, b] → [0,+∞) be two integrable monotonic functions. If f and g
are of opposite monotonicity, then the Chebyshev integral inequality states that

1

b− a

∫ b

a

f(x)g(x)dx ≤
[

1

b− a

∫ b

a

f(x)dx

] [
1

b− a

∫ b

a

g(x)dx

]
.

If f and g are both increasing or both decreasing, then this inequality is reversed

Jensen integral inequality

Let I be an interval with I ⊆ R, φ : I → R be a concave function, let a, b ∈ R with a < b and let
f : [a, b]→ I be an integrable function. Let p : [a, b]→ [0,+∞) be a probability density function, i.e., such

that
∫ b
a
p(x)dx = 1. Then the Jensen integral inequality states that

∫ b

a

φ(f(x))p(x)dx ≤ φ
(∫ b

a

f(x)p(x)dx

)
If f is convex instead of concave, then this inequality is reversed
Equality holds if and only if f is constant almost everywhere or φ is affine on the convex hull of the

range of f .
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[8] C. Huygens, Oeuvres Completes, Société Hollandaise des Sciences, Haga, 1888-1940.
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