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Abstract

Let G be a finite group having center Z(G). The commuting graph of G denoted by C(G) has vertex set
as G \ Z(G), and two vertices x and y are adjacent in C(G) if x and y commute with each other. The
commuting graph of a finite group is a powerful tool in group theory to understand the internal structure
of the group. Through its graph-theoretic properties, the commuting graph helps in classifying groups and
understanding how the group works internally. It serves as a visual and computational tool to complement
other algebraic methods in group theory. The Szeged index is a topological index used in the study of
molecular structures, particularly in chemistry and chemical graph theory. It is a numerical value that
characterizes the connectivity of a molecular graph. In this paper, we have determined the Szeged index
of the commuting graph of various finite non-commutative groups, namely the dihedral group Dn, and
the dicyclic group Dicn. Moreover, we determine the energy of C(Dn) and C(Dicn). A graph is said to be
hyperenergetic if the energy of G is greater than the complete graph. In this paper, we prove that the
graphs C(Dn) and C(Dicn) are non-hyperenergetic graphs.

Key Words: Commuting Graph, Non-Commutative Group, Szeged Index, Energy, Adjacency Matrix,
Eigenvalues.

AMS 2020 Classification: 05C25, 05C09, 05C12.

1. Introduction

In theoretical chemistry, a topological index, also known as the connectivity index is used to study the
molecular structure of a chemical compound. There are various types of topological indices which are
categorized based on their degree, distance, and various other graph invariants. The topological index of
a graph that is the oldest and thoroughly examined is the Wiener index which is based on the distance
between the vertices of a given graph, see [1, 2] for some references. Two well-known and well-studied
degree-based topological indices are the 1st Zagreb index [3] and the 2nd Zagreb index [4]. The Szeged
index of a graph has been introduced much later and it has been studied in great detail nowadays. The
Szeged index has a close association with the Wiener index. Introduced by Ivan Gutman, the Szeged index
generalizes the concept of the Wiener index. A few basic mathematical properties of the Szeged index have
been derived in [5, 6], and its certain chemical applications have been studied in [7, 8].
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We shall assume G to be a simple and a connected graph. Let V (G) and E(G) denote the vertex set and
the edge set of G respectively. Let | G | denote the order of G. Two adjacent vertices a and b are denoted
by a ∼ b. The join of two graphs G1 = (V1, E1) and G2 = (V2, E2) is denoted by G1 ∨G2, and the union of
two graphs is denoted by G1∪G2. We follow [9] for basic definitions in graph theory. The distance between
two vertices a, b ∈ G, denoted by d(a, b), is defined to be the length of the shortest path from a to b. The
Wiener index [10] of a connected graph G is defined as follows:

W (G) =
1

2

∑
a,b∈V (G)

d(a, b). (1)

Suppose e ∈ E(G) is an edge between the vertices a and b of G. We first state the following definitions: We
define

n1(ab|G) = |{x ∈ G : d(x, a) < d(x, b)}|

n2(ab|G) = |{x ∈ G : d(x, b) < d(x, a)}|.
(2)

The two quantities described in (2) were mentioned for the first time in [11]. For a long time, it was known
that the formula

W (G) =
∑

e(=ab)∈E(G)

n1(ab|G)n2(ab|G) (3)

holds for molecular graphs of alkanes. In [12], it was proved that (3) holds for all trees. Furthermore, in
[5] it was shown that (3) does not hold in general (in particular for graphs containing cycles), and only
holds for graphs whose each block is a complete graph. Although the attempts to change the right-hand
side of (3) to make it applicable to all connected graphs have been successfully made in [13, 14], the
resulting expressions were very confusing. In [6], it was suggested that the complications arising with the
generalization of (3) to all connected graphs containing cycles could be overcome by using the right–hand
side of (3) as the definition of a new graph invariant. Consequently, the formula was extended to all graphs
and it came to be known as the Szeged index of a graph. The Szeged index of a connected graph G is
defined as follows:

Sz(G) =
∑

e(=ab)∈E(G)

n1(ab|G)n2(ab|G). (4)

The Szeged index has been considered from multiple viewpoints; see, for example, [15, 16] and the refe-
rences therein for some literature on the same. The Szeged index of the Cartesian product of graphs([10]),
join and composition of graphs([17]), and bridge graphs([18]) have been determined by various authors
in the recent past. The Szeged index of generalized join of graphs has been studied in [19]. Recently, the
Szeged index of unicyclic graphs was studied in [20].

Given a finite group G, the commuting graph of G, C(G), has vertex set as V = G \ Z(G) and any two
vertices x, y ∈ V are adjacent only if xy = yx. The study of the commuting graph of a finite group provides
valuable insights into the structure and properties of the group. By encoding the commutative relationships
between its elements, the commuting graph reveals hidden interactions that might not be immediately
obvious through other methods of group analysis. There are several key motivations for studying the
commuting graph, ranging from understanding the group structure to gaining insights into specific classes
of groups. The commuting graph reveals the centralizer structure of the group. The centralizer of an element
g ∈ G, denoted CG(g), is the set of all elements in G that commute with g. The commuting graph helps us
visualize how elements interact by commuting with each other, and the induced subgraph corresponding to
a centralizer will be a complete subgraph. By studying these induced subgraphs, we can gain deeper insights
into the group’s internal structure, such as which elements share the same centralizer and how centralizers
relate to other subgroups. The connectivity of the commuting graph provides important information about
the internal structure of the group. For example, if the graph is highly connected, it might indicate that
many elements in the group share centralizing properties. If the graph is disconnected, it suggests that
the group has a more complex structure with isolated parts (such as distinct conjugacy classes or normal
subgroups). The diameter of the graph (the longest shortest path between any two vertices) can also offer
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insights into the group’s overall complexity and how the elements are related in terms of commutation. The
center of the group forms a clique in the commuting graph. If the group has a large center or centralizers,
these cliques can be substantial, revealing the abelian or near-abelian portions of the group. Identifying
these cliques helps in understanding the balance between abelian and non-abelian parts of the group. The
chromatic number of the commuting graph (the minimum number of colors needed to color the graph so
that no two adjacent vertices share the same color) can provide insight into the structure of conjugacy
classes or the dynamics of group actions. This can be particularly useful in understanding how the group
can be decomposed or classified based on the interactions of its elements.

The non-commuting graph of G, NC(G), has vertex set as V = G \Z(G) and any two vertices x, y ∈ V
are adjacent only if xy 6= yx. Here, Z(G) denotes the center of the group G, i.e.

Z(G) = {x ∈ G : xg = gx forall g ∈ G}.

Chelvam et al. in [21] considered the commuting graph of the dihedral group Dn, and studied its various
properties. In [22], the authors studied the distant properties as well as detour distant properties of C(Dn).
The metric dimension and resolving polynomial of C(Dn) have also been studied by them. The commuting
graph of Dn was also studied in [23]. The spectral properties of commuting graphs of various finite groups
have been studied in [24, 25]. The metric dimension of the commuting graph of generalized dihedral groups
has been studied in [26]. The metric dimension and the resolving polynomial of the non-commuting graph
of Dn was studied in [27].

It has been an active research topic over the past few years to study the topological properties of
commuting and non-commuting graphs of various finite groups [28, 29]. The Szeged index of commuting
graph has not been determined yet, which puts a gap in the literature. This motivates us in this paper
to investigate the Szeged index of the commuting graph of the dihedral group Dn, and the dicyclic group
Dicn.

The energy E(G) of a graph G is defined to be the sum of absolute values of all the eigenvalues of
the adjacency matrix of G. Since the eigenvalues of the adjacency matrix of the complete graph, Kn
are n − 1 having multiplicity 1, and −1 having multiplicity n − 1, the energy of the complete graph is
2(n − 1). We say a graph G to be hyperenergetic if E(G) > E(Kn) = 2(n − 1), and non-hyperenergetic
if E(G) < E(Kn) = 2(n − 1). In [30], it was shown that the line graph of Kn is hyperenergetic for n ≥ 5.
Nikiforv obtained a significant result regarding hyperenergetic graphs in [31]. The author had shown that

for almost all graphs E(G) =

(
4
3π + o(1)

)
n

3
2 , which implies that almost all graphs are hyperenergetic.

Consequently, the problem of finding non-hyperenergetic graphs is quite significant, see [32]. In this paper,
we prove that the graphs C(Dn) and C(Dicn) are not hyperenergetic for any n.

The paper has been arranged as follows: In (2), we compute the Szeged index of C(Dn) and C(Dicn).
In (3), we prove that C(Dn) and C(Dicn) are non-hyperenergetic for all n.

2. Szeged Index of Commuting Graph of Non-commutative Groups

In this section, we shall compute the Szeged index of commuting graph of non-commutative groups like
the dihedral group Dn and the dicyclic group Dicn. We first determine the Szeged index of commuting
graph of the dihedral group Dn.

2.1. Szeged Index of Commuting Graph of Dihedral group Dn

The dihedral group Dn of order 2n has the following representation:

Dn = 〈r, s : rn = s2 = 1, rs = sr−1〉.

Moreover, the center of Dn is given as follows:

Z(Dn) =

{
{1, r

n
2 } if n is even,

{1} if n is odd.

We now provide the two main results of this section, viz. (1), (2).
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Theorem 1. If n is odd, then the Szeged index of C(Dn) is given as follows:

Sz(C(Dn)) =
n(7n− 5)

2
.

Proof. Since n is odd, so using [22, Proposition 2.2], we have

C(Dn) = K1 ∨ (Kn−1 ∪Kn).

Now, if e is an edge of C(Dn), then we have the following possibilities:

Case 1: e = ab where a ∈ K1 and b ∈ Kn−1 ∪Kn or vice versa.

Case 2: e = ab where a, b ∈ Kn−1.

We shall now consider the two cases given above one by one in what follows.

Case 1: Let e = ab where a ∈ K1 and b ∈ Kn−1 ∪Kn.
Since b ∈ Kn−1 ∪Kn, so we again have the following two cases:

Subcase 1: b ∈ Kn−1. Let v be a vertex of C(Dn) such that v /∈ {a, b}. Now, if v ∈ Kn−1, then d(v, a) =
d(v, b) = 1. If v ∈ Kn, then d(v, a) = 1, and d(v, b) = 2. Since, n1(ab|C(Dn)) = n + 1, n2(ab|C(Dn)) = 1,
so n(ab|C(Dn)) = n+ 1. Since there exist n− 1 edges of the form ab where a ∈ K1 and b ∈ Kn−1, so∑

e(=ab)∈C(Dn)
a∈K1 and b∈Kn−1

n(ab|C(Dn)) = n2 − 1. (5)

Subcase 2: b ∈ Kn. Let v be a vertex of C(Dn) such that v /∈ {a, b}. Now, if v ∈ Kn−1, then d(v, a) = 1,
and d(v, b) = 2. If v ∈ Kn, then d(v, a) = 1, and d(v, b) = 2. Since Kn−1 has n− 1 vertices, and Kn has
n − 1 vertices other than b, so n1(ab|C(Dn)) = 2n − 1, n2(ab|C(Dn)) = 1. Consequently, n(ab|C(Dn)) =
n1(ab|C(Dn))n2(ab|C(Dn)) = 2n− 1. Since there exist n edges of the form ab where a ∈ K1 and b ∈ Kn,
so ∑

e(=ab)∈C(Dn), a∈K1 and b∈Kn

n(ab|C(Dn)) = 2n2 − n. (6)

Case 2: Let e = ab where a, b ∈ Kn−1.
Let v be a vertex of C(Dn) such that v /∈ {a, b}. Now, if v ∈ Kn−1, then d(v, a) = d(v, b) = 1. Also,

if v ∈ Kn, then d(v, a) = d(v, b) = 2. Moreover, if v ∈ K1, then d(v, a) = d(v, b) = 1, so n(ab|C(Dn)) =

n1(ab|C(Dn))n2(ab|C(Dn)) = 1. Since there exist
(
n−1
2

)
= (n−1)(n−2)

2 edges of the form ab where a, b ∈
Kn−1, so ∑

e(=ab)∈C(Dn), a,b∈Kn−1

n(ab|C(Dn)) =
(n− 1)(n− 2)

2
. (7)

Using (5), (6) and (7), we obtain

Sz(C(Dn)) =
∑

e(=ab)∈C(Dn)

n(ab|C(Dn))

= (n2 − 1) + (2n2 − n) +

(
(n− 1)(n− 2)

2

)
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=
7n2 − 5n

2
.

�

Theorem 2. If n is even, then the Szeged index of C(Dn) is given as follows:

Sz(C(Dn)) =
13n2

2
− 10n.

Proof. Since n is even, using [22, Proposition 2.2], we have

C(Dn) = K2 ∨ (Kn−2 ∪
n

2
K2).

If e is an edge of C(Dn), then we have the following cases:

Case 1: e = ab where a ∈ K2 and b ∈ Kn−2 ∪ n
2K2 or vice versa,

Case 2: e = ab where a, b ∈ Kn−2,

Case 3: e = ab where a, b ∈ (n/2)K2.,

Case 4: e = ab where a, b ∈ K2.

We shall now consider the four cases in the order listed above in what follows.

Case 1: Let e = ab where a ∈ K2 and b ∈ Kn−2 ∪ n
2K2. Since b ∈ Kn−2 ∪ n

2K2, so we again have the
following two sub-cases:

Subcase 1: b ∈ Kn−2. Let v be a vertex of C(Dn) such that v /∈ {a, b}.
Since v is a vertex of C(Dn), the following possibilities may arise, either v ∈ K2, or v ∈ Kn−2, or

v ∈ n
2K2.

We shall now list down the distance of the vertex v from a and b in a tabular form in (1).

v ∈ K2 v ∈ Kn−2 v ∈ n
2K2

d(v, a) = 1 d(v, a) = 1 d(v, a) = 1
d(v, b) = 1 d(v, b) = 1 d(v, b) = 2

Table 1. Possible Distances of v from a and b

Using (1), we observe that d(v, a) < d(v, b) only if v ∈ n
2K2. So, n1(ab|C(Dn)) = 1 and n2(ab|C(Dn)) =

n + 1. Consequently, n(ab|C(Dn)) = n + 1. We note that there exist 2(n − 2) edges of the form ab where
a ∈ K2 and b ∈ Kn−2. So, ∑

e(=ab)∈C(Dn)
a∈K2 and b∈Kn−2

n(ab|C(Dn)) = 2(n− 2)(n+ 1). (8)

Subcase 2: b ∈ (n/2)K2. Then b is a vertex of K2 for some n.
Let v be a vertex of C(Dn) such that v /∈ {a, b}.
Similar to Subcase 1, the following possibilities may arise, either v ∈ K2, or v ∈ Kn−2, or v ∈ n

2K2,
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v ∈ K2 v ∈ Kn−2 v ∈ n
2K2

d(v, a) = 1 d(v, a) = 1 d(v, a) = 1
d(v, b) = 1 d(v, b) = 2 d(v, b) = 1 or 2

Table 2. Possible Distances of v from a and b

We shall now list down the distance of the vertex v from the vertices a and b in a tabular form in the
following table((2)):

We note that if v ∈ (n/2)K2, then d(v, b) = 1 or d(v, b) = 2. We shall explain the above fact in detail
in what follows.

If v ∈ (n/2)K2, then either b and v are in the same component of (n/2)K2 or they lie in different
components of (n/2)K2. If b and v lie in the same component of (n/2)K2, then we must have d(v, b) = 1.

Now, if b and v lie in different components of (n/2)K2, then we must have d(v, b) = 2. We observe that
there are (n2 −1) such components of (n/2)K2 where v may lie for which d(v, b) = 2. Hence we get 2(n2 −1)
such vertices in (n/2)K2 for which d(v, a) < d(v, b). Moreover, we also have n−2 vertices of Kn−2 for which
d(v, a) < d(v, b). So, n1(ab|C(Dn)) = 2n − 3, and n2(ab|C(Dn)) = 1, This gives, n(ab|C(Dn)) = 2n − 3.
Since there are 2n edges of the form ab where a ∈ K2 and b ∈ n

2K2, we get∑
e(=ab)∈C(Dn), a∈K2 and b∈ n

2
K2

n(ab|C(Dn)) = 2(2n2 − 3n). (9)

Case 2: Let e = ab where a, b ∈ Kn−2.
Let v be a vertex of C(Dn) such that v /∈ {a, b}. Now, if v ∈ Kn−2, then d(v, a) = d(v, b) = 1. Also, if

v ∈ K2, then d(v, a) = d(v, b) = 1. Moreover, if v ∈ n
2K2, then d(v, a) = d(v, b) = 2. So, n(ab|C(Dn)) = 1.

We note that there exist
(
n−2
2

)
= (n−2)(n−3)

2 edges of the form ab where a, b ∈ Kn−2. So,

∑
e(=ab)∈C(Dn)
a,b∈Kn−2

n(ab|C(Dn)) =
(n− 2)(n− 3)

2
. (10)

Case 3: Let e = ab, where a, b ∈ n
2K2. Thus, a, b ∈ K2 for some n. Let v be a vertex of C(Dn) such that

v /∈ {a, b}. Since d(v, a) = d(v, b), so n(ab|C(Dn)) = 1.
We note that there exist (n/2) edges of the form ab where a, b ∈ n

2K2. So∑
e(=ab)∈C(Dn), a,b∈ n

2
K2

n(ab|C(Dn)) =
n

2
. (11)

Case 4: Let e = ab, where a, b ∈ K2. Let v be a vertex of C(Dn) such that v /∈ {a, b}. Since d(v, a) =
d(v, b) = 1, so n(ab|C(Dn)) = 1. Since there exists only 1 edge of the form ab where a, b ∈ K2, so∑

e(=ab)∈C(Dn), a,b∈K2

n(ab|C(Dn)) = 1. (12)

Thus, using (8), (9), (10), (11) and (12) we obtain,

Sz(C(Dn)) =
∑

e(=ab)∈C(Dn)

n(ab|C(Dn))
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=
∑

e(=ab)∈C(Dn)

n1(ab|C(Dn))n2(ab|C(Dn))

=
∑

e(=ab)∈C(Dn)
a∈K2 and b∈Kn−2

n(ab|C(Dn)) +
∑

e(=ab)∈C(Dn)
a∈K2 and b∈ n

2
K2

n(ab|C(Dn))

+
∑

e(=ab)∈C(Dn)
a,b∈Kn−2

n(ab|C(Dn)) +
∑

e(=ab)∈C(Dn)
a,b∈ n

2
K2

n(ab|C(Dn)) +
∑

e(=ab)∈C(Dn)
a,b∈K2

n(ab|C(Dn))

= 2(n− 2)(n+ 1) + 2(2n2 − 3n) +
(n− 2)(n− 3)

2
+
n

2
+ 1

=
13n2

2
− 10n,

which completes the proof. �

2.2. Szeged Index of Commuting Graph of Dicyclic group Dicn

In this section, we now determine the Szeged index of commuting graph of the dicyclic group Dicn.

Definition 1. The dicyclic group Dicn having order 4n has the following representation:

Dicn = 〈a, x : a2n = 1, an = x2, ax = xa−1〉.

Moreover, using [33, Corollary 2.6], we know that C(Dicn) has the following representation:

C(Dicn) = K2 ∨ (K2n−2 ∪ nK2). (13)

We now state without proof the following theorem as it can be proved by similar proof techniques as
used in (2).

Theorem 3. Given n ∈ N, the Szeged index of C(Dicn) is given as follows:

Sz(C(Dicn)) = 2(13n2 − 10n).

3. Energy of C(Dn) and C(Dicn)
Here, we determine the energy of the commuting graph of the dihedral and the dicyclic group. We prove
that C(Dn) and C(Dicn) are non-hyperenergetic.

Theorem 4. If n(≥ 3) is an odd number, then C(Dn) is not hyperenergetic.

Proof. Using [34, Proposition 5.1], the adjacency matrix of C(Dn) has the following characteristic
polynomial:

Λ(C(Dn);x) = xn−1(x+ 1)n−2

(
x3 + (−n+ 2)x2 + (−2n+ 1)x+ n2 − 2n

)
. (14)

Now, let us consider the polynomial f(x) = x3 + (2− n)x2 + (1− 2n)x+ (n2 − 2n).
Let the roots of f(x) be λ1 ≤ λ2 ≤ λ3 arranged in non-decreasing order.
Now, we have the following relations,

λ1 + λ2 + λ3 = n− 2 > 0,

λ1λ2 + λ2λ3 + λ3λ1 = 1− 2n,

λ1λ2λ3 = 2n− n2 = n(2− n) < 0.

(15)
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Using (15), we find that the sum of roots of f(x) is positive, while the product of roots of f(x) is
negative. Hence, we can assume that f(x) has one negative root and 2 positive roots. Thus, we have
λ1 ≤ 0 ≤ λ2 ≤ λ3.

Now,

f(0) = n2 − 2n = n(n− 2) > 0, (16)

and

f(−n) = −n3 + (2− n)n2 + (1− 2n)(−n) + n2 − 2n

= −n(n− 1)(2n− 3) < 0.
(17)

Since, f(x) is a continuous function over the set of real numbers, using (17) and Bolzano’s Intermediate
Value Theorem, we find that f(x) = 0 has one real root in (−n, 0). Hence, −n < λ1 < 0.

Thus, we have

|λ1|+ |λ2|+ |λ3| = λ1 + λ2 + λ3 − 2λ1

= (n− 2)− 2λ1.
(18)

Since −n < λ1 < 0, we have,

2n > −2λ1 > 0

=⇒ (n− 2) + 2n > (n− 2)− 2λ1 > n− 2

=⇒ 3n− 2 > (n− 2)− 2λ1 > n− 2.

(19)

Using (18) and (19), we obtain

n− 2 < |λ1|+ |λ2|+ |λ3| < 3n− 2. (20)

Now, using (14), the energy of C(Dn) is given as follows:

E(C(Dn)) = (n− 2) + |λ1|+ |λ2|+ |λ3|.

Using (18) and (20), we have,

(n− 2) + (n− 2) < E(C(Dn)) < (3n− 2) + (n− 2)

=⇒ 2(n− 2) < E(C(Dn)) < 4(n− 1) = 4n− 4 < 4n− 2.

Since E(C(Dn)) < 4n− 2, we conclude that C(Dn) is not hyperenergetic. Thus, the result follows. �

Theorem 5. If n(≥ 4) is an even number, then C(Dn) is not hyperenergetic.

Proof. Using [34, Proposition 5.9], the adjacency matrix of C(Dn) has the following characteristic
polynomial:

Λ(C(Dn);x) = (x+ 1)(
n
2
+n−2)(x− 1)(

n
2
−1) ×

(
x3 + (−n+ 1)x2 + (−2n− 1)x+ 2n2 − 5n− 1

)
. (21)

Now, let us consider the polynomial f(x) = x3 + (−n+ 1)x2 + (−2n− 1)x+ 2n2 − 5n− 1.
Let the roots of f(x) be λ1 ≤ λ2 ≤ λ3 arranged in non-decreasing order.
Now, we have the following relations,

λ1 + λ2 + λ3 = n− 1 > 0,

λ1λ2 + λ2λ3 + λ3λ1 = −(1 + 2n),

λ1λ2λ3 = −(2n2 − 5n− 1).

(22)
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We note that since n ≥ 4, 2n − 5 ≥ 3. This implies that n(2n − 5) ≥ 12. Hence, n(2n − 5) − 1 ≥ 11 > 0
for n ≥ 4. Hence, −(2n2 − 5n− 1) < 0.

Using (22), we find that the sum of roots of f(x) is positive, while the product of roots of f(x) is
negative. Hence, we can assume that f(x) has one negative root and 2 positive roots. Thus, we have
λ1 ≤ 0 ≤ λ2 ≤ λ3.

Now,

f(0) = 2n2 − 5n− 1 > 0, (23)

and

f

(
− n

2

)
= −

(
n

2

)3

+ (1− n)

(
− n

2

)2

+ (−1− 2n)

(
− n

2

)
+ 2n2 − 5n− 1

= −1

8

(
n3 − 10n2 + 44n+ 8

)
.

(24)

Since n ≥ 4, so n3 − 10n2 + 44n+ 8 ≥ 0, which in turn proves that f

(
− n

2

)
< 0.

Since, f(x) is a continuous function over the set of real numbers, using (24) and Bolzano’s Intermediate
Value Theorem, we find that f(x) = 0 has one real root in (−n2 , 0). Hence, −n2 < λ1 < 0.

Thus, we have

|λ1|+ |λ2|+ |λ3| = λ1 + λ2 + λ3 − 2λ1

= (n− 1)− 2λ1.
(25)

Since −n2 < λ1 < 0, we have,

n > −2λ1 > 0

=⇒ (n− 1) + n > (n− 1)− 2λ1 > n− 1

=⇒ 2n− 1 > (n− 1)− 2λ1 > n− 1.

(26)

Using (??), we obtain

n− 1 < |λ1|+ |λ2|+ |λ3| < 2n− 1. (27)

Now, using (21), the energy of C(Dn) is given as follows:

E(C(Dn)) =

(
3n

2
− 2

)
+

(
n

2
− 1

)
+ |λ1|+ |λ2|+ |λ3|

= 2n− 3 + |λ1|+ |λ2|+ |λ3|.

Using (??), we obtain

(2n− 3) + (n− 1) < E(C(Dn)) < (2n− 1) + (2n− 3)

=⇒ 3n− 4 < E(C(Dn)) < 4n− 4.

Since E(C(Dn)) < 4(n− 1) < 4n− 2, we conclude that C(Dn) is not hyperenergetic. �

Theorem 6. If n(≥ 4) is an even number, then C(Dicn) is not hyperenergetic.
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Proof. Using [34, Proposition 5.15], we find that the adjacency matrix of C(Dicn) has the following
characteristic polynomial:

Λ(C(Dicn);x) = (x+ 1)(3n−2)(x− 1)(n−1) ×
(
x3 + (−2n+ 1)x2 + (−4n− 1)x+ 8n2 − 10n− 1

)
.

Consequently, the energy of C(Dicn) is given by:

E(C(Dicn)) = 3n− 2 + n− 1 + |λ1|+ |λ2|+ |λ3|

= 4n− 3 + |λ1|+ |λ2|+ |λ3|,

where λ1, λ2, λ3 are roots of the equation x3 +(−2n+1)x2 +(−4n−1)x+8n2−10n−1 = 0. Using similar
proof techniques as used in (5), the result follows. �

4. Conclusion

The study of the commuting graph of a finite group is motivated by its ability to provide a visual and
structural perspective on the group’s internal relationships, such as centralizers, conjugacy classes, and
the center of the group. It helps in classifying groups (abelian, nilpotent, solvable), investigating central
and non-central structure, studying automorphisms and group actions, identifying normal subgroups, and
providing computational tools for group analysis.

In this paper, we compute the Szeged index of the commuting graph of the dihedral group and the
dicyclic group. We also calculate the energy of the commuting graphs of the dihedral group and the
dicyclic group, and prove that they are always nonhyperenergetic. Though the Szeged index of a graph is
an important topological index, it has not been calculated explicitly for different algebraic graphs yet. We
invite the readers to calculate the Szeged index of various other graphs existing in the literature, namely
the zero divisor graph, comaximal graph, power graph, and so on.
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