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Abstract

This paper investigates the analytical results of both linear and nonlinear time-fractional Klein-Gordon
equations using the novel Yang-Abdel-Cattani derivative operator. In order to solve the proposed time-
fractional Klein-Gordon equations, we applied the Laplace Adomian decomposition technique. The
effectiveness of this operator is demonstrated through three test problems. These include both linear
and nonlinear time-fractional Klein-Gordon equations. Furthermore, the influence of different fractional
Brownian motion values on the solution profiles is analyzed and presented graphically.
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1. Introduction

Fractional calculus generalizes traditional integration and differentiation to non-integer orders. This field
has intrigued scholars for over three centuries. The non-local nature of fractional differential equations
makes them particularly adept at modeling a wide range of phenomena in both scientific and engine-
ering contexts. This growing academic interest has not only resolved practical issues but also enabled
precise characterization of nonlinear phenomena, especially in fluid mechanics, where traditional conti-
nuum assumptions often fall short. As a result, fractional models have become prime candidates for such
applications[1, 2, 3]. Moreover, fractional derivatives are powerful mathematical tools for representing pro-
cesses with memory and hereditary properties[4, 5]. Researchers have developed various methods to solve
both linear and nonlinear fractional differential equations, demonstrating the advantages and effectiveness
of fractional calculus in these areas[6, 7, 8].

In 1927, the Klein-Gordon equation was introduced by Oscar Klein and Walter Gordon as a fascinating
differential equation. In his search for an equation defining de Broglie waves, Schrodinger initially con-
sidered the Klein-Gordon equation as a quantum wave equation. Solid-state physics, elementary particle
behavior, dispersive wave phenomena, dislocation propagation in crystals, nonlinear optics, relativistic
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physics, and quantum field theory are several scientific applications that rely on the Klein-Gordon equ-
ation [9, 10]. The authors of [11] studied nonlinear Schrodinger equations of fractional order. In[12],
authors have a study of implicit-impulsive differential equations involving the Caputo-Fabrizio fractio-
nal derivative. Ullah et al. [13] have proposed advancing non-linear PDE solutions: the modified Yang
transform method with the Caputo-Fabrizio fractional operator. Usta et al.[14] have studied analytical
solutions within local fractional Volterra and Abel’s integral equations via the Yang-Laplace transform.
In [15], authors have investigated the existence of solutions to integral equations in the form of quadratic
Urysohn type with Hadamard fractional variable order integral operator. The authors of [16] studied a
generalized Mittag-Leffler function and a modified general class of functions which is reducible to several
special functions. Golmankhaneh et al. [17] have investigated the fractional order Klein-Gordon equations
(KGEs) using the homotopy perturbation method (HPM). Tamsir et al. [18] have solved the fractional
order KGEs using the fractional reduced differential transform method. Authors in [19] have investiga-
ted the numerical computation of Klein-Gordon equations arising in quantum field theory by using the
homotopy analysis transform method. A number of articles in [18, 20, 21] provide recent publications on
fractional Klein-Gordon equations.

In this study, we apply the Laplace Adomian Decomposition Method (LADM) to the time fractional
order Klein-Gordon equation, yielding results in the YAC sense. The computational process of this method
is straightforward, and graphical representations substantiate our findings. Our primary focus is on the
fractional model of the Klein-Gordon equation[18].

Y ACDq
t φ(r, t) = φrr(r, t) + uφ(r, t) + vφ2(r, t) + wφ3(r, t), t > 0 (1)

Subject to the initial conditions
φ(r, 0) = φ0, r ∈ R

Where Y ACDq
t φ =

∂qφ

∂tq
, φrr =

∂2φ

∂r2
and u, v, w are real constants. Yang et al. [22] introduced a generalized

fractional derivative by employing the Rabotnov exponential function as a non-singular kernel. Notably,
when q = 1, Eq (1) reduces to the classical Klein-Gordon equations (KGEs), which have numerous
applications in areas such as solid-state physics, nonlinear optics, and quantum field theory [23]. The
recurrence of initial states and soliton interactions in collisionless plasma are just a few examples of the
equation’s many applications. As a fundamental equation in mathematical physics, it has been widely
researched in relation to solitons and condensed matter physics [24, 25, 26]. Various methods have been
applied to solve the KGEs, including the variational iteration method (VIM), homotopy perturbation
method (HPM), fractional reduced differential transform method (FRDTM), and Adomian decomposition
method (ADM) [18, 25, 26].

The structure of this work is organized as follows: This section provides an introduction to the historical
background of fractional calculus, the Klein-Gordon equations, and non-integer derivatives. Section 2
outlines the basic definitions and properties of the newly proposed arbitrary-order YAC derivative, along
with an analysis of its essential features. In Section 3, the Laplace Adomian decomposition method is
discussed, as well as the Laplace integral transform of new derivative properties through a theorem.
Section 4 addresses the existence and uniqueness of solutions. Section 5 presents three numerical examples
and includes graphs to illustrate the results. Finally, concluding remarks are provided in Section 6.

2. The Yang-Abdel-Cattani Fractional Calculus

This section provides a brief overview of the arbitrary-order YAC derivative, integral operators, and
fractional Rabotnov exponential functions.

Definition 1. [22, 27] The Rabotnov exponential function of non integer order k is defined below

%q(ιu
q) =

∞∑
k=0

ιku[(k+1)(q+1)]−1

Γ[(k + 1)(q + 1)]
, u ∈ C, k, q ∈ < > 0.

and its Laplace transform is:

L{%q(ιuq); ξ} =
1

ξq+1

1

1− ηξ−(q+1)
, |(ηξ−(q+1))| < 1.
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Definition 2. [22, 27] The generalized YAC derivative of arbitrary order can be expressed using the
fractional Rabotnov exponential function (FREF) as follows:

Y ACDmq
t φ(r, t) =

∫ t

0

%q[−η(t− χ)q]φm(r, χ)dχ, m ∈ N

where %q represents the Rabotnov exponential function of order q, and its Laplace transform is
characterized as

L
{
Y ACDmq

t φ(r, t)
}

=
1

ξq+1

1

1 + ηξ−(q+1)
[ξmφ(r, χ)−

m∑
p=1

ξm−pφp(r, 0)]

Definition 3. [22, 27] The associated integral of order q, with 0 < η ∈ R and q ∈ (0, 1], is defined as
follows:

IY AC0 φ(t) =

∫ t

0

%q[−η(t− χ)q]φ(χ)dχ

[22] and its L−transform is

L
{
IY AC0 φ(t) : ξ

}
=

1

ξq+1

L[φ(t)]

1− ηξ−(q+1)

Definition 4. [27] The Prabhakar function is defined as follows:

Ψµ
q,ρν =

∞∑
k=0

(µ)k
k!Γ(qk + ρ)

νk, Re(q) > 0, Re(ρ) > 0, µ > 0

Where (µ)k is a Pochhammer notation [28] and has the following form

(µ)k =


µ(µ+ 1)(µ+ 2)...(µ+ k − 1) =

Γ(µ+ k)

Γ(µ)
, k ∈ Z+,

1, k = 0

µ(µ− 1)(µ− 2)...(µ− k + 1) =
Γ(µ+ 1)

Γ(µ− k + 1)
, k ∈ Z−

and its Laplace integral transform has the form below:

L
{
νρ−1Ψµ

q,ρ(ηνq)
}

= ξ−ρ(1− ηξ−q)−µ, |ηξ−q| < 1.

The Prabhakar function is connected with the following special functions. (see [28]).

Ψ−µq,ρ+1ν =
Γ(µ+ 1)

Γ(µq + ρ+ 1)
Eρµ(ν, q), (2)

With Eρµ(ν, q) is a polynomial of degree µ in νq studed in [28].

Ψ−µ1,ρ+1ν =
Γ(µ+ 1)

Γ(µ+ ρ+ 1)
Lρµ. (3)

where Lρµ represents the Laguerre polynomial. In this study, we will utilize the Prabhakar functions, defined
in Equations (2) and (3), to derive the results for an arbitrary-order Klein-Gordon equation within the
context of the YAC derivative.

Lemma 1. [29] Let q, ρ > 0, η ∈ < and µ be a positive integer. Then

L
{
tρ−1Ψ−µq,ρ(ηνq)

}
(ξ) = ξ−ρ(1− ηξ−q)µ, ξ > 0.



Numerical Solution of Time Fractional Klein-Gordon Equation 129

3. Laplace Adomian Decomposition Method

Consider the following partial differential equation of arbitrary order, framed within the YAC derivative
context:

Y ACDq
t φ(r, t) = ζ1φ(r, t) +H1(r, t). (4)

The linear and nonlinear components of the first equation in system (1) are denoted by ζ1 and H1,
respectively, with the initial condition being:

φ(r, 0) = h(r, t).

Next, applying the Laplace transform to Equation (4) on both sides results in:

1

ξq+1

ξL [φ(r, t)]− φ(r, 0)

1 + ηξ−q−1
= L [ζ1φ(r, t) +H1φ(r, t)] .

L[φ(r, t)] =
φ(r, 0)

ξ
+ ξq(1 + ηξ−q−1)L[ζ1φ(r, t) +H1φ(r, t)]. (5)

The solution is:

ζ1[φ(r, t)] =
∞∑
m=0

φm(r, t) (6)

The nonlinear term in the problem is described as:

H1[φ(r, t)] =
∞∑
m=0

Km. (7)

where

Km =
1

m!

[
dm

dpm
(H1

∞∑
m=0

pmφm)

]
p=0

are called Adomian polynomials. Substituting Equations (6) and (7) into Equation (5) gives:

L[
∞∑
m=0

φm(r, t)] =
φ(r, 0)

ξ
+ ξq(1 + ηξ−q−1)L

[ ∞∑
m=0

φm(r, t) +
∞∑
m=0

Km

]

Using the decomposition method, we derive:

L[φ0(r, t)] =
φ(r, 0)

ξ

L[φm+1(r, t)] = ξq(1 + ηξ−q−1)L[ζ1φm(r, t) +H1φm(r, t)]

Theorem 1. The Laplace transform of the fractional Rabotnov exponential kernel is defined as follows

L
{
Y ACDmq

t φ(r, t)
}

=
1

ξq+1

1

1 + ηξ−(q+1)

[
ξmφ(r, χ)−

m∑
p=1

ξm−pφp(r, 0)

]

Theorem 2. Let φ ∈ H1(c, d), d > c, q ∈ (0, 1].Then,Y ACDmq
t is the mth-order YAC fractional derivative

operator. Then, the Laplace transform of Y ACDmq
t is

L
{
Y ACDmq

t φ(r, t)
}

=
1

ξq+1

1

1 + ηξ−(q+1)

[
ξmφ(r, χ)−

m∑
p=1

ξm−pφp(r, 0)

]
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Proof. The YAC fractional derivative with a Rabotnov kernel is defined as:

Y ACDq
t φ(r, t) =

∫ t

0

%q[−η(t− χ)q]φ′(r, χ)dχ.

By the definition of LT

L
{
Y ACDq

t φ(r, t)
}

=

∫ ∞
0

e−ξt
{∫ t

0

%q[−η(t− χ)q]φ′(r, χ)dχ

}
dt

By applying the convolution theorem, we obtain:

L
{
Y ACDq

t φ(r, t)
}

= L
{
φ′(r, t)

}
∗ L {%q(−ηtq)}

we obtained

L
{
Y ACDq

t φ(r, t)
}

=
1

ξq+1

1

1 + ηξ−(q+1)
[ξL[φ(r, χ)]− φ(r, 0)]

Similarly,

L
{
Y ACD2q

t φ(r, t)
}

=
1

ξq+1

1

1 + ηξ−(q+1)

[
ξ2L[φ(r, χ)]− ξφ′(r, 0)− φ(r, 0)

]
Through mathematical induction, we derive:

L
{
Y ACDmq

t φ(r, t)
}

=
1

ξq+1

1

1 + ηξ−(q+1)

[
ξmφ(r, χ)−

m∑
p=1

ξm−pφp(r, 0)

]

which completes the proof. �

4. Existence and Uniqueness

Theorem 3. The YAC derivative operator of order q satisfies the Lipschitz condition, where a is the
Lipschitz constant. Specifically, this can be expressed as:∥∥∥Y ACDq

t φ1(r, t)−Y AC Dq
t φ2(r, t)|| ≤ a||φ1(r, t)− φ2(r, t)

∥∥∥
Proof. By utilizing the YAC fractional derivative of order q, the following result is obtained:∥∥∥Y ACDq

t φ1(r, t)−Y AC Dq
t φ2(r, t)

∥∥∥ =

∥∥∥∥∫ t

0

%q[−η(t− χ)q]φ′1(r, χ)dχ−
∫ t

0

%q[−η(t− χ)q]φ′2(r, χ)dχ

∥∥∥∥
=

∥∥∥∥∫ t

0

%q[−η(t− χ)q][φ′1(r, χ)− φ′2(r, χ)]dχ

∥∥∥∥
∥∥∥Y ACDq

t φ1(r, t)−Y AC Dq
t φ2(r, t)

∥∥∥ ≤
∫ t

0

‖%q[−η(t− χ)q]‖
∥∥[φ′1(r, χ)− φ′2(r, χ)]dχ

∥∥
≤ a ‖[φ1(r, χ)− φ2(r, χ)]‖

Finally, we get the following result:∥∥∥Y ACDq
t φ1(r, t)−Y AC Dq

t φ2(r, t)
∥∥∥ ≤ a ‖φ1(r, t)− φ2(r, t)‖

which completes the proof. �
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Theorem 4. Let us assume that the function f(r, t, φ, φr, φrr) satisfies the Lipschitz condition as

|f(r, t, φ, φr, φrr)− f(r, t, φ1, φ1r, φ1rr)| ≤ K|φ− φ1|+M |φr − φ1r|+N |φrr − φ1rr|

We also assume that
|φr − φ1r| ≤ α|φ− φ1|
|φrr − φ1rr| ≤ β|φ− φ1|

where α and β are elements of R+, there exists a unique solution for the following time fractional differential
equation:

Y ACDq
t φ = φrr + uφ+ vφ2 + wφ3,

Proof. We define
$(φ, r) = f(r, t, φ, φr, φrr) = φrr + uφ+ vφ2 + wφ3

We first show that $(φ, r) satisfies Lipschitz condition. Consider

||$(φ, r)−$(φ1, r)|| = ||f(r, t, φ, φr, φrr)− f(r, t, φ1, φ1r, φ1rr)||

≤ K||φ− φ1||+M ||φr − φ1r||+N ||φrr − φ1rr||

≤ [K +Mα+Nβ]||φ− φ1||

= A||φ− φ1||

where A = K +Mα+Nβ ∈ <+.
Using Picard’s theorem, we obtain

φ(r, t) = φ(r, 0) +

∫ t

0

%q[−η(t− χ)q]$(φ, r(χ))dχ.

For convenience, we write∫ t

0

%q[−η(t− χ)q]$(φ, r(chi))dχ = IqY AC$(φ, r(χ))dχ.

Finally, we have

‖φ(r, t)− φ(r, 0)‖ = ‖IqY AC$(φ, r(χ))dχ‖ ,

=

∥∥∥∥∫ t

0

%q[−η(t− χ)q]$(φ, r(χ))dχ

∥∥∥∥
≤

∫ t

0

‖%q[−η(t− χ)q]$(φ, r(χ))‖ dχ

≤ AIqY AC(1)

Now, we consider

||φ(r, t)− φ(r, 0)|| = ||IqY AC$(φ, r, χ)dχ− IqY AC$(φ1, r(χ))dχ||,

≤ IqY AC ||$(φ, r, χ)dχ−$(φ1, r(χ))dχ||,

≤ AIqY AC ||φ− φ1||

For the above mapping to be a contraction, the condition must be met as follows:

AIqY AC ≤ 1

IqY AC ≤
1

A

Thus, the existence and uniqueness of the solution can be established as a direct consequence of the Banach
fixed point theorem. �
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5. Solutions of Time Fractional Klein-Gordon Equations

In this section, we will explore the applications of the newly introduced Yang-Abel-Cattani (YAC) fractio-
nal derivative by examining three numerical examples involving both linear and nonlinear time fractional
Klein-Gordon equations.

Example 1. Consider the linear time-fractional order Klein-Gordon equation [18]:

Y ACDq
t φ = φrr + φ, t ≥ 0, (8)

subject to the initial condition
φ(r, 0) = 1 + sin(r)

When the Laplace transform is applied to Equation (8) on both sides, we have:

1

ξq+1

ξL[φ(r, t)]− φ(r, 0)

1 + ηξ−q−1
= L[φrr + φ]

L[φ(r, t)] =
φ(r, 0)

ξ
+ ξq(1 + ηξ−q−1)L[φrr + φ] (9)

Taking the inverse Laplace transform on both sides of Equation (9) yields:

φ(r, t) = φ(r, 0) + L−1
{
ξq(1 + ηξ−q−1)L[φrr + φ]

}
Following the Adomian decomposition method, the procedure results in:

∞∑
m=0

φm(r, t) = φ(r, 0) + L−1

{
ξq(1 + ηξ−q−1)L[

∞∑
m=0

φm(r, t)]

}

Now we will find the values of φ1(r, t),φ2(r, t),...,φm(r, t) by putting m = 1, 2, 3, .... Estimation of the first
iteration φ1(r, t): setting m = 1 we obtain

φ1(r, t) = L−1
{
ξq(1 + ηξ−q−1)L[φ0rr + φ0]

}
(10)

Now using the value of starting guess φ0(r, t) = 1 + sin(r) in above equation (10) we obtain:

φ1(r, t) = t−qΨ−1
q+1,−q+1(−ηtq+1)

The next few terms are expressed as:

φ2(r, t) = t−2qΨ−2
q+1,−2q+1(−ηtq+1)

φ3(r, t) = t−3qΨ−3
q+1,−3q+1(−ηtq+1)

φm(r, t) = t−mqΨ−mq+1,−mq+1(−ηtq+1)

Therefore the final solution of (8) is

φ(r, t) = 1 + sin(r) +
∞∑
m=1

t−qmΨ−mq+1,−mq+1(−ηtq+1)

An exact solution to the classical Klein-Gordon equation, specifically equation (8), can be derived. This
solution, which aligns with the results previously obtained by M. Tamsir et al. [18] using the fractional
reduced differential transform method, offers a consistent analytical approach.
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Fig. 1. 3D view of example 1 with the parameters q = 1 and η = 0.5.

Example 2. Consider the nonlinear time fractional order Klein-Gordon equation [18]

Y ACDq
t φ = φrr − φ2, t > 0, (11)

subject to the initial condition as follows

φ(r, 0) = 1 + sin(r)

Operating the Laplace transform on both sides of Equation (11) leads to:

1

ξq+1

ξL[φ(r, t)]− φ(r, 0)

1 + ηξ−q−1
= L[φrr − φ2]

L[φ(r, t)] =
φ(r, 0)

ξ
+ ξq(1 + ηξ−q−1)L[φrr − φ2] (12)

Implementing the inverse Laplace transform on left and right sides of Equation (12) results in:

φ(r, t) = φ(r, 0) + L−1
{
ξq(1 + ηξ−q−1)L[φrr − φ2]

}
Through the Adomian decomposition method, the solution is:

∞∑
m=0

φm(r, t) = φ(r, 0) + L−1

{
ξq(1 + ηξ−q−1)L[

∞∑
m=0

φm(r, t)−
∞∑
m=0

Km(r, t)]

}

where Adomian polynomial components Km(r, t) are given as follows:

K0 = φ2
0; K1 = 2φ0φ1; K2 = 2φ0φ1 + φ2

1

and so on. For m = 0, 1, 2, ...

φ1(r, t) = L−1
{
ξq(1 + ηξ−q−1)L[φ0rr − φ2

0]
}

(13)

Now, putting the value of starting guess φ0(r, t) = 1 + sin(r) in Equation (13), we obtain:

φ1(r, t) = −[1 + 3sin(r) + sin2(r)]t−qΨ−1
q+1,−q+1(−ηtq+1)
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Subsequently, the following terms can be expressed as:

φ2(r, t) = [11sin(r) + 12sin2(r) + 2sin3(r)]t−2qΨ−2
q+1,−2q+1(−ηtq+1)

φ3(r, t) = [18− 57sin(r)− 160sin2(r)− 82sin3(r)− 10sin(4r)]t−3qΨ−3
q+1,−3q+1(−ηtq+1)

...

Therefore the general solution of (11) is

φ(r, t) = 1 + sin(r)− [1 + 3sin(r) + sin2(r)]t−qΨ−1
q+1,−q+1(−ηtq+1) + [11sin(r) + 12sin2(r)

+2sin3(r)]t−2qΨ−2
q+1,−2q+1(−ηtq+1) + [18− 57sin(r)− 160sin2(r)

− 82sin3(r)− 10sin(4r)]t−3qΨ−3
q+1,−3q+1(−ηtq+1)− ... (14)

Eq (14) is the approximate solution for the nonlinear time fractional Klein-Gordon equation. The same
solution was obtained by M.Tamsir et al [18] using the fractional reduced differential transform method.

t r FRDTM [18] Our Method
−2 0.0925 0.0907
−1.5 0.0045 0.0025
−1 0.1602 0.1585
−0.5 0.5210 0.5206
0 0.9980 1.0000

0.002 0.5 1.4741 1.4794
1 1.8330 1.8415
1.5 1.9876 1.9975
2 1.9002 1.9093
2.5 1.5922 1.5985
3 1.1382 1.1411

Table 1. Comparison study between the fractional reduced differential transform method and our method for
numerical Example 2, when q = 1 and η = 1E − 10

Fig. 2. 3D view of example 2 with the parameters q = 1 and η = 1E − 10 .
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Example 3. Consider the nonlinear time fractional order Klein-Gordon equation [18]

Y ACDq
t φ = φrr − φ+ φ3, t > 0, (15)

subject to the initial condition as follows

φ(r, 0) = −sech(r).

Applying the Laplace transform to Equation (15) on two sides provides:

1

ξq+1

ξL[φ(r, t)]− φ(r, 0)

1 + ηξ−q−1
= L[(φrr − φ) + φ3]

L[φ(r, t)] =
φ(r, 0)

ξ
+ ξq(1 + ηξ−q−1)L[(φrr − φ) + φ3] (16)

After taking the inverse Laplace transform on two sides of Equation (16), we get:

φ(r, t) = φ(r, 0) + L−1
{
ξq(1 + ηξ−q−1)L[(φrr − φ) + φ3]

}
By following the Adomian decomposition method, the next terms are derived as:

∞∑
m=0

φm(r, t) = φ(r, 0) + L−1

{
ξq(1 + ηξ−q−1)L

[ ∞∑
m=0

φm(r, t) +
∞∑
m=0

Km(r, t)

]}

where Adomian polynomial components Km(r, t) are given as follows:

K0 = φ3
0; K1 = φ0φ

2
1 + 2φ1φ

2
0; K2 = 3φ2

0φ2 + 3φ0φ
2
1

and so on. For m = 0, 1, 2, ...

φ1(r, t) = L−1
{
ξq(1 + ηξ−q−1)L

[
φ0rr − φ0 + φ3

0

]}
(17)

Now, putting the value of φ(r, t) and using the value of initial guess φ0(r, t) = −sech(r) in equation (17),
we get

φ1(r, t) = −[2sech(r)− 3sech3(r)]t−qΨ−1
q+1,−q+1(−ηtq+1)

Consequently, the next few component have the following expressions:

φ2(r, t) = −[3sech(r)− 34sech3(r)− 18sech5(r)]t−2qΨ−2
q+1,−2q+1(−ηtq+1)

φ3(r, t) = −[64sech3(r)− 288sech5(r) + 240sech7(r)]t−3qΨ−3
q+1,−3q+1(−ηtq+1)

...

Therefore the general solution of (15) is

φ(r, t) = −sech(r)− [2sech(r)− 3sech3(r)]t−qΨ−1
q+1,−q+1(−ηtq+1)− [3sech(r)− 34sech3(r)

−18sech5(r)]t−2qΨ−2
q+1,−2q+1(−ηtq+1)− [64sech3(r)− 288sech5(r)

+ 240sech7(r)]t−3qΨ−3
q+1,−3q+1(−ηtq+1)− ... (18)

Eq (18) is the approximate solution for the nonlinear time fractional Klein-Gordon equation, clearly in

complete agreement. with the results given by M. Tamsir et al [18] using FRDTM.
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Fig. 3. Three dimensional plot of example 3 with the parameters; a. q = 0.01 and η = 1 and b. q = 1 and
η = 1E − 10

t r FRDTM [18] Our Method
−2 −0.2682 −0.2658
−1.5 −0.4282 −0.4251
−1 −0.6503 −0.6481
−0.5 −0.8848 −0.8868

0.005 0 −0.9944 −1.0000
0.5 −0.8848 −0.8868
1 −0.6503 −0.6481
1.5 −0.4282 −0.4251
2 −0.2682 −0.2658

Table 2. Comparison study between the fractional reduced differential transform method and our method for
numerical Example 3, when q = 1 and η = 1E − 10

6. Conclusion

This work aimed to evaluate the YAC fractional derivative operator’s effectiveness in solving linear and
nonlinear time-fractional Klein-Gordon equations analytically. This study revealed several noteworthy
properties of the YAC fractional derivative operator. To evaluate the accuracy and effectiveness of the
approach and support the underlying theoretical concepts, three computational examples were carried
out. These examples demonstrate that as fractional Brownian motion approaches non-fractional Brownian
motion, the solution profile demonstrates a decay trend. The solutions derived using the YAC fractional
derivative operator align closely with those reported by M. Tamsir et al. [18].
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